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Abstract—Understanding the communication behavior and analyze the behavior of several of Sandia’s important fedral
network resource usage of parallel applications is critichto  applications. Following that, we extended our instrumeoita

achieving high performance and scalability on systems with g mework to differentiate between MPI point-to-point and
tens of thousands of network endpoints. The need for better . L
collective communication resource usage [5].

understanding is not only driven by the desire to identify ; ‘ ) . .
potential performance optimization opportunities for current While these studies provided much needed information

networks, but is also a necessity for designing next-gendian  about applications, many questions were still left unamedie
networking hardware. In this paper, we describe our approatr  Qur initial results were obtained on Myrinet cluster, so #sw
to instrumenting the SeaStar interconnect on the Cray XT seies unclear whether we would see the similar behavior with a

of massively parallel processing machines to gather low-el . . -
network timing data. This data provides a new perspective on network that is capable of offloading a significant amount of

performance evaluation, both in terms of evaluating the resurce Message processing. Relative to some other parallel camgput
usage patterns of applications as well as evaluating diffent platforms, the Myrinet cluster was unbalanced in terms of
implementation strategies in the network protocol stack. the amount of compute power per node relative to the peak
injection bandwidth per node. We were anticipating that Red
Storm would be a much more balanced system and were
This study is a continuation of previous research into thensure what impact this would have on network resource
network resource usage characteristics of scientific lghegd- usage. We also were not able to do the level of instrumemtatio
plications on distributed-memory massively parallel gsging that was needed to fully characterize certain behavior. For
machines. Our initial motivation for this work was a resulexample, we were able to easily determine the number of
of our collaboration with Cray, Inc. to design a new highincoming messages, but we were unable to determine when
performance network for Sandia’s Red Storm machine [1§,message had arrived from the underlying network relative t
which is the prototype of what has become the commerciallyhen the application had requested to receive it.
successful Cray XT series of machines. Cray’s initial desig After working together with Cray to develop and deploy
for the SeaStar — a network interface and seven-port routee Red Storm system, we can now use this platform for
chip — presented some significant challenges for our anti¢urther explorations in this area. By applying a similar in-
pated use of the network. In particular, the SeaStar ca;itasirumentation strategy for the SeaStar and extending it to
a 500 MHz processor and only 384 KB of on-board RAMsupport more detailed information, we can attempt to answer
Since we anticipated using the processor and memory these questions. This type of data has also been critical
message processing activities, it was unclear whethepéneds for research into designing next-generation high-pertoroe
and limited memory capacity would be able to support theetwork hardware [6], [7].
demanding communication requirements of our applications In this paper, we describe our approach to gathering low-
In our initial study [2], we analyzed network resourcéevel network performance data that we can use to charaeteri
usage characteristics important for offloading MPI protocthe network resource usage of applications on a highly-
processing. We instrumented the MPI implementation fdwalanced massively parallel processing machine. In peatic
the Myrinet [3] high-performance network to gather datae extend the existing network to place timestamps on incom-
that would help characterize the processing and memadng messages in order to have a more fine-grained analysis of
requirements of applications. We began by characterizieg thetwork and application behavior. The rest of this paper is
behavior of a well-known parallel application benchmaritesu organized as follows. The next section provides background
In a subsequent study [4], we used the same approachotothe SeaStar network hardware and software stack, while
Section 1ll describes our approach to instrumentation. The
*Corresponding author. Phone: (505)844-2099 FAX: (S05)BA%. details of our test platform and the applications from which
Sandia is a multiprogram laboratory operated by Sandia d@atipn, a . . .
Lockheed Martin Company, for the United States Departméginergy’s Na- we gathered performance data are describe in Section IV.
tional Nuclear Security Administration under contract BE04-94AL85000. Performance results and analysis are provided in Section V.
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We summarize the conclusions of this study in Section VI ar@@l Portals

discuss avenues of future work in this area in Section VII.  The |owest-level network programming interface for the
SeaStar is the Portals data movement layer [9]. Portals were
Il. BACKGROUND designed to be protocol building blocks that could be as-
sembled to implement a number of upper layer protocols.
In particular, Portals were designed specifically to suppor
The demands of a high-performance network for large-scaescalable, high-performance implementation of MPI. We
parallel computing systems are driven by the way in whidbriefly describe the relevant Portals structures that aeel us
applications use MPI. While MPI is typically not the onlyto implement MPI. See [10] for a more complete discussion.
upper layer protocol that makes use of the underlying high-Portals provides one-sided data movement operations, but
performance network, it is the most important for two reasnlike other one-sided programming interfaces, the tawgat
sons. First, MPI performance has the largest influence on ttegnote operation is not a virtual address. Instead, thmatt
performance and scalability of network-bound applicaiondestination of a message is determined at the receivingepsoc
Secondly, MPI is typically the only upper layer protocol e by comparing contents of the incoming message header with
the application programmer directly influences the use ef tithe contents of Portals structures at the destination.
network at both the source and destination. Other upper layeWhen an incoming message arrives at the destination, the
protocols are usually provided by system services where thessage header contains a destination Portal number which
application is only a client. Despite the presence of othés used to differentiate between upper layer protocols. MPI
upper layer protocols, it is MPI that exudes the most stregiocates a specific Portal for matching incoming receives.
on network resources. Attached to the Portal is a match entry (ME) that containg a se
Conceptually an MPI implementation has two messa@é criteria that must match the incoming header. Messages ca
queues — one that contains a list of outstanding receibe selected based on source node id (nid), source process id
requests (the posted receive queue) and one that contair(pid), and 64 bits of message tag. The destination can witdca
list of messages that have already arrived for which thererigl and pid and also has 64 mask bits that can be used to
no matching receive request (the unexpected or early rrii@entify a subset of the tag bits to be used for matching.
queue). The posted receive queue must be traversed each tinfdtached to each ME is a memory descriptor (MD) that
a new message arrives, while the unexpected queue mustpgcribes the location in memory where the incoming message
traversed each time a receive request is posted. This laifefo be deposited. There are a number of options associated
operation — searching the unexpected queue and posting/ith each MD that determine how the matching message is
receive request — must be an atomic operation to insu¢@nsumed. For example, the MD has an option to truncate
the pairwise ordering semantics of MPI. To our knowledgéhe incoming message to receive only as much data as the
all MPI implementations implement these two queues &eceiver has requested. MDs also have a threshold value that
linear lists. While other strategies, such as hash tables, getermines whether the MD can be used only once or used
possible, their use is inhibited by the fact that MPI allowgultiple times.
for “wildcarding” source and message tag so that a postedAn event queue (EQ) can be attached to an MD to record
receive can match any one of several incoming messages.tp@ operations that have occurred on the MD. The EQ is a
such, a hash table approach has the potential to speed eh segifcular queue of entries that captures the relevant stateso
operations, but prohibitively increases the cost of ineerand MD at the time the operation completed. Portals has a split
deletion operations, particularly with respect to zerdelping- €vent model where an event is generated when an operation
pong latency performance. In terms of network processif Started (START event) and a subsequent event is written
capability, it is the management of these two queues thahen the operation is completed (END event). This allows for

largely determines the processing requirements of a nktwofecognizing situations where a short message may arriee aft
a long message but may complete before the long message.
B. ScaSar It is also used to identify transfers that may have started
successfully but encountered a failure at some later pigibDs
The SeaStar is an ASIC from Cray, Inc., that combingfaye to the option to turn off either START or END events or

a network interface and a high-speed seven-port router ofijgore events altogether by not attaching an EQ to the MD.
single chip. The SeaStar is connected to an AMD Opteron

processor via a HyperTransport link. The current-genenatiD- Portals on the SeaStar

SeaStar is capable of sustaining a peak unidirectionattioje Because Portals is the lowest-level network programming
bandwidth of more than 2 GB/s and is able to sustain a peiterface for the SeaStar, it was important to have a working
unidirectional link bandwidth of more than 3 GB/s. Eaclimplementation as soon as possible so that other areastef sof
SeaStar contains a 500 MHz PowerPC that can be usedmare development for the Red Storm machine could progress.
perform protocol processing activities. Each SeaStar laéso The initial implementation of Portals for the SeaStar was
384 KB of on-board RAM. For a more detailed discussion afeveloped by Cray and was based on the reference implemen-
the SeaStar network, see [8]. tation from Sandia. In order to get something working qujickl
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Cray chose an interrupt-driven strategy. When a messapat need to be given to handling unexpected messages. As the
arrives at the SeaStar, it copies the message header imel kenumber of items in the unexpected message queue grows, the
space and interrupts the host processor. The host operatorger it takes to search this queue before posting a receive
system is then responsible for inspecting the message headkgjuest. The maximum number of items inspected and the
traversing the Portals data structures, and programmiag thaximum length of the unexpected queue give us an idea of
DMA engines on the SeaStar to deliver the contents of thige resources that are needed to search this queue.
message directly into user space. One of the limitations of our previous work on MPI queue
While Cray to continued to develop their interrupt-drivemnalysis is that we had no way of knowing the arrival times
implementation, Sandia worked on an implementation thaf messages. We could easily count the number of expected
would do all of the Portals message processing work usiagd unexpected messages, but we had no way to determine
the SeaStar’s on-board PowerPC processor and avoid #my arrival time of a message relative to the time that the
host processor involvement in message reception. Due to Hpplication posted a receive request. We therefore extende
limited processing capability and available memory on theur instrumentation environment with message timestamps t
SeaStar, it was unknown whether this strategy would hagellect this type of data. We are now able to determine how
the ability to support the demands of tightly-coupled gdatal long a message sat in the posted receive queue before being
applications using tens of thousands of endpoints. It wasatched or how long a message sat in the unexpected queue
this concern over the limited capabilities of the SeaStat thbefore it was requested by the application.
motivated our initial work into characterizing the network We also added instrumentation to the MPI library to count
resource usage characteristics of MPI applications. the number of times that Portals failed to post a receive due t
Sandia’s implementation of Portals using the SeaStassbsequentincoming messages. Since the process of sgarchi
processor has since been integrated into Cray’s productibe unexpected queue and posting a receive must be atomic,
software environment so that it is possible to switch betweé@ortals provides a function that will conditionally insem
using the interrupt-driven implementation, called Gen@&or- ME into match list provided there are no pending events on
tals (GP), or the offloaded version, called Acceleratedé®®rtan event queue. The MPI library is responsible for processin
(AP), when a parallel job starts. Micro-benchmark resuimss  all of the events in the unexpected event queue. If no match
that AP has some significant advantages over GP. In pantjcula found, then it calls the conditional insert function. g
AP has a 1-2s latency advantage, a steeper bandwidth curvenditional insert fails, it means that a message has cotoe in
and much less host processor overhead [8]. However, the unexpected message queue and MPI must first see if this
formal study comparing application performance between tis the matching message. We are interested in measuring how
two approaches has ever been conducted. Informal testingofien this fails to help determine whether the effectiveneafs
Sandia has shown that some applications can see a 10-1h% approach to getting atomicity.
improvement in performance, but, for most applicationg, th
performance differential is not significant. For the apaiions A Timestamps
in this study, the difference between AP and GP is not Unlike our previous approach to instrumenting MPI to
significant. gather data on queue processing and message arrival data, al
of the necessary information is not at the user-level inside
of MPI. In the MPI implementation for Myrinet, the MPI
We are interested in the following measurements relatedﬁgrary is responsible for managing both the posted recac

I1l. APPROACH

the MPI queues: unexpected message queues. However, for the Portals MPI im-
« Average number of items that were inspected each tipeementation, the posted receive queue is completely neahag
the queue was searched. by Portals, so we needed to extend our instrumentationlieto t
« Maximum number of items that were inspected. Portals implementation and provide a mechanism for MPI to

« Maximum number of items in the queue at any one timeetrieve this information. Here we describe the instruragon

For the posted receive queue, the average items searcted was added to Portals and the mechanisms that the MPI
gives us an idea of how many items must be looked at befoneplementation uses to collect and record the data.
a matching receive is found. Ideally, each incoming messageThe instrumentation for the posted receive queue is straigh
would match the first entry in the list. The maximum numbdprward. We keep a running total of the number of times the
of items that were searched places an upper bound on thatch entry list on the MPI receive Portals was traversednEa
number of entries that an unexpected message had to travelisee we traverse the list, we keep a count of the number of
The maximum length of the posted receive queue providesitems that were inspected. We add this value to a total count
upper bound on the number of outstanding receive requeistorder to calculate the average, and we also compare it to a
that the application has at any given time. This data pointaximum value.
helps us characterize the amount of memory that is needed tdVe extended the Portals API in four different ways. First,
hold these requests. we added a timestamp field to the event queue entry so

Similarly, for the unexpected queue, the average numbertbat timestamps could be recorded with each event. We also
items that were inspected gives some insight into the ressuradded three new function calls. The first new call provides a



mechanism for getting the current time from the Portalslayehort messages, those less than 128 KiB, eagerly, and uses a
The second new call allows us to retrieve the time when thendezvous protocol for larger messages.
last match entry as added was added into a match list. Finall o
we added a call that provides a current snapshot of the qugeAppllcanons
instrumentation data. We have collected results from several applications that
Adding timestamps to the GP implementation was relativere an important part of Sandia’s modeling and simulation
straightforward. We decided to use the processor timestamprkload, including CTH, SAGE, and ITS. We also include
counter on the Opteron, since the kernel does all messageults from HPCCG, which is a mini-application designed
processing and is responsible for writing the event inta-uséo mimic the message passing and computation behavior of
space. Using the processor’s timestamp counter also allovgeveral much larger and complex applications. We mad three
us to implement the Portals network time function withoutuns of each application for each configuration (SN/VN mode,
a system call, which is much more costly and could addP/GP mode) for each processor count from two to 160.
significant perturbation. CTH is a multi-material, large deformation, strong shock
Adding timestamps to the AP implementation was slightlwave, solid mechanics code developed at Sandia. CTH has
more challenging. We used the timestamp counter on thwdels for multi-phase, elastic viscoplastic, porous ard e
PowerPC for timestamping events. In order to provide thiti plosive materials. Three-dimensional rectangular mesthes
to the application, we mapped an area of SeaStar memory idimensional rectangular, and cylindrical meshes; and one-
user space and had the SeaStar firmware update the mappewensional rectilinear, cylindrical, and spherical mestare
memory location with the current time on every iteratiomvailable. It uses second-order accurate numerical mettwd
through its main loop. An idle pass through the main loofeduce dispersion and dissipation and to produce accurate,
takes about 200 ns. efficient results. CTH is used for studying armor/anti-armo
Retrieving the timestamp of the last entry that was addétieractions, warhead design, high explosive initiatibisics,
to a match list was also straightforward. In order to reco@hd weapons safety issues.
how long a receive request had been sitting in the postedSAGE, SAIC's Adaptive Grid Eulerian hydrocode, is a
receive queue, we needed to know the time when it hatulti-dimensional, multi-material, Eulerian hydrodyniam
been inserted in the match list. Our first attempt at this wasde with adaptive mesh refinement that uses second-order
to record the creation time of the ME inside the Portaccurate numerical techniques [11]. It represents a ldegs ¢
implementation and then provide a function call to returef production applications at Los Alamos National Laborgato
this time for a specific ME. After a successful atomic seardhis a large-scale parallel code written in Fortran 90 anesus
and update, we immediately call this function to get the MEIPI for inter-processor communications. It routinely ruwrs
creation timestamp. Unfortunately, we did not account féhousands of processors for months at a time.
a race condition where the ME could be inserted and thenThe Integrated Tiger Series (ITS) code, is a radiation trans
immediately matched and deleted before the applicatioidcoyort Monte Carlo code [12], [13]. ITS permits Monte Carlo
call back into the library to get the creation time. So rathewolution of linear time-independent coupled electronfpho
than return the creation time of a specific ME, the Portateansport radiation transport problems, with or withoue th
implementation just keeps track of the time the last ME wasesence of macroscopic electric and magnetic fields of ar-
created. bitrary spatial dependence. Physical rigor is provided by
employing accurate cross sections, sampling distribatiand
IV. TESTENVIRONMENT physical models for describing the production and trartspior
In this section we provide an overview of the hardware aritie electron/photon cascade from 1.0 GeV down to 1.0 keV.
software environment of our test system and briefly describée sample problem set performs the Starsat MITS test with
the applications from which performance data was collecte@AD flow and geometry and ACIS simulation mode.
The HPCCG [14] mini-application is a simple conjugate
A. Platform gradient solver that represents an important workload for
The machine used in our experiments is a Cray XT3Mandia. It is commonly used to characterize the performance
development system with 80 compute nodes. Each compuofenew hardware platforms that are under evaluation. The
node contains a 2.4 GHz dual-core AMD Opteron processmiajority of its runtime is spent in a sparse matrix-vector
and 2 GB of RAM. The software environment is based on Cragultiply kernel. We ran HPCCG in both strong scaling (fixed
software release 2.0.35 running the Catamount lightweightoblem size) and weak scaling (scaled problem size) modes.
kernel operating system. We provide performance results ru
ning in both single-node (SN) mode, where only one of the
processing cores on a node is used, and virtual-node (VN)The amount of data that we have collected is too large to
mode, where both cores are active. It should be noted tlalver in great detail in this study. Therefore, we limit our
Catamount does not support shared-memory communicatianalysis to only the data which our previous approach using
SO0 messages between the processes on the same noddyiinet did not support — namely low-level queue timing
VN mode use Portals. The Cray MPI implementation sendsita. In general, the data that we gathered relative to the

V. RESULTS
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percentage of expected and unexpected messages is cansisteowed little difference. HPCCG did not send any messages
with our previous study and does not appear to be impactadger than 128 KiB. There are clearly some trends visible

by the balance of the system. in this graph. In all cases, there’s a consistent difference
between SN and VN modes, with the queue times for VN
A. Short Unexpected Average Queue Time mode consistently greater. The time for ITS scales with the

Figure 1 shows the average time that a message sat in tlwenber of processes in the job, while the others tend tofflatte
unexpected short message queue for the GP implementatimut. The data for SAGE seems to indicate that it is able to more
In general, there was little difference between GP and Aguickly retire long posted receive messages — perhaps utitho
We would hope that the queue time for a short unexpectady synchronization messages.
message is very short, since short unexpected messages tend
to consume buffer space and require memory copies. A shbrt Maximum Queue Length
gueue time means that the application just missed being ablé&igure 3 shows the maximum length of the posted receive
to post a matching receive. We can see that the queue timeeue. We can see that the behavior this queue shows little
is generally the same between SN and VN modes for maktpendence on whether we are running in GP or AP mode
applications, except in a few cases with ITS and SAGE wheoe SN or VN mode. Interestingly, the maximum length of
the SN times are significantly longer than the VN times. the posted receive queue for ITS is on a downward trend,

whereas the others are not. The maximum length for SAGE
B. Long Expected Average Queue Time seems to scale with the number of processes in the job, so

Figure 2 shows the average time that a long expected m#swill be interesting to see if this trend continues to large
sage sat in the MPI posted receive queue. These numbersmioEess counts.
for the GP implementation, as again the AP implementationThe maximum length of the unexpected queue is shown
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in Figure 4. Again, there does not seem to be a significamtocesses, the number of failures between AP and GP in SN
difference between the various modes for these applicgtiomode is nearly a factor 12. We also notice that trend for AP

and the queue for SAGE appears to scale with the numberasfd VN mode is increasing.

processes in the job. Overall, these results for maximurogue Finally, we see the same data for CTH in Figure 8. The

length agree with our previous results on Myrinet. curves in this graph are nearly identical to those for SAGE,
. except that the scale is much higher. This trend is distggbin
D. Post Failures and much more investigation is needed to determine why AP

One of the more interesting and unexpected data points thatd VN have so many more failures compared to GP SN mode.
we discovered as a result of our instrumentation concemns trhis is perhaps one of the reasons that the micro-benchmark
number of times that MPI failed to successfully post a reeeiperformance increase seen with AP over GP is not reflected
because the atomic search-and-post operation failedrd=lgu in actual application performance.
shows the number of times that ITS failed to post a receive due
to an incoming message. ITS sends and receives a relatively
small number of messages compared to the other applicationdn this paper, we have described our approach to instrument-
so this small number of failures is not too surprising. ing the Portals implementation for the Cray SeaStar in caer

Figure 6 shows the number of post failures for HPCC@ather low-level MPI message and queue information. While
Here we see a significantly larger number of failures, with ttour approach was similar to previous work that was done for
worst case being AP VN mode. Overall the number of failurébe Myrinet network, the SeaStar network provided a more
is still fairly reasonable. balanced system on which to collect performance data and

Continuing on, we see the same data for SAGE in Figure ffrovided a chance to compare and contrast our previougsesul
Again, we see that the worst case is for AP VN mode. At 64ith a network that is able to offload a significant part of the

VI. CONCLUSIONS
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