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Motivation

• Many types of structures are subjected to random 
environments
– Wind loads on buildings, sea loads on off-shore structures, 

aerodynamic forces on flight vehicles, etc.

• Accurate prediction of structural dynamic response 
requires:
– Validated models for structure (S) AND input (Q)

• Most work in model validation is focused on S

• Our work is focused on validation of Q
– Many of these environments cannot be measured directly

– Data is always limited



Introduction

• Many structures subjected to random vibration 
environments can be modeled as linear

• Some of those environments are approximately stationary

• We may know something about the general form of the 
model for random excitation

• We can use  this knowledge and the theory of linear random 
vibrations to identify the parameters of an excitation model

• Validate the environment model following the procedures 
used for the validation of the structural model



Assumptions

1. Structure is linear and model is accurate
– Allows us to focus on validation of the environment 

model; this can be relaxed later

2. Structure is excited by a zero mean, stationary, 
Gaussian, stochastic process input that cannot be 
measured directly

– Because excitation is Gaussian, response is 
Gaussian, and both can be fully characterized by 
second-moment properties

3. We have measured structural responses
– They are free of measurement error

– They have finite duration



A Linear Structure

For the sake of clarity we consider the random 
vibration and excitation identification of a specific 
structure:
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• Tapered-beam part is 
modeled with beam 
elements in FE code

• Three DOF 
substructure is 
modeled with springs 
/ masses / dashpots

• Loads applied at 
transverse beam DOF

Q represents (random) turbulent flow over the beam



Linear Random Vibrations

• Stationary, Gaussian stochastic process can be 
fully specified by its spectral density matrix

– Auto-spectral density characterizes distribution of 
MS signal content in the frequency domain

– Cross-spectral density characterizes degree of 
linear relation and average phase between two 
processes

• Two-sided spectral density matrix of excitation is:



Linear Random Vibrations

• Theory of linear random vibration relates spectral 
density matrix of inputs to spectral density matrix 
of outputs/responses:

where

is a matrix of FRFs



A Stationary Random Excitation

• Consider a stationary, Gaussian excitation with 
zero mean and one-sided spectral density matrix 
of the form

where           is the scalar ASD at each input 
location, and         is a Hermitian matrix with 
elements

Meanings …? What is known and what is unknown?



Two examples follow

• Example #1

– One output signal available at midpoint of beam

– Can identify input ASD

– Identification of environment model only

• Example #2

– Two output signals available (DOFs 10 and 30)

– Can identity input ASD and correlation length ()

– Identification and validation addressed



• One output signal available (mid-point of beam)

– When response is measured at one location and 
parameter  is known, we can identify ASD of 
excitation at each input location

– Estimate noise due to finite-length output records

xUvwX  21 /
rp

Example #1: Identification



Example #1: Identification 
results
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• Two output signals available (DOFs 10 and 30)

– When response is measured at two locations 
and  is unknown, we can identify:
1. ASD of excitation at each input location, and

2. The value for (correlation length)

– We do this by minimizing error between 
estimated response spectral density matrix 
and spectral density matrix of response 
excited by input with arbitrary parameters

xUvwX  21 /
rp

Example #2: Identification



Example #2: Identification 
results
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• Accurate estimates for f > 100 Hz; inaccurate for f 
< 100 Hz

• System does not respond below 100 Hz (first 
mode is 315 Hz) so irrelevant (see next slide)

Example #2: Identification 
results



• Response spectral densities – estimated from 
measurements vs. computed from identified input
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Example #2: Identification 
results



Validation procedure

1. Output of 
interest

2. Metric for 
comparison

3. Adequacy 
Criteria

3 Key Elements

Data for validation cannot be used for identification.



Example #2: Validation

• For Example #2, the following were estimated:
– Excitation spectral density,

– Decay rate parameter, , from the off-diagonal terms in 
the excitation spectral density 

• Given these quantities, other spectral measures of 
structural response can estimated. For example:
– Spectral density of response at any location

– Cross-spectral densities

– Measures that are functions of auto- and cross-spectral 
densities



Example #2: Validation

• Assume that response at DOF 44 is critical

• Estimate its spectral density from
– Finite measured data (blue)

– Estimated input parameters (red)
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An environment validation might 
seek to infer validity of the input 
model by comparing these two 
curves, or a measure of the curves.

Spectral density at DOF 44



Example #2: Validation

• For example, we choose to compare the peak displacement 
response PDF, a function of the spectral density

• Validation requirement: Mean and standard deviation of 
peak response PDF based on identified input parameters 
must be within ten percent of mean and standard deviation 
based on measured data

• Let Z denote peaks in random response; its PDF is

where is the standard normal CDF and 0 <  < 1 is the 
“irregularity factor”



Example #2: Validation results

• The moments that form  are functions of the spectral 
density:

• From direct estimates (measured data, blue)

• From the identified input model parameters (red)
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Example #2: Validation results

• Mean and standard deviation based on direct estimates 
(measured data)

• Mean and standard deviation based on identified input 
model parameters

• Latter moments within ten percent of former; therefore 
excitation model is valid
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Conclusions
• Developed techniques for estimating model parameters of 

excitation spectral density

– Guidelines sought

• Extended current validation procedures to consider models for 
random vibration environments

• Assumptions

– Structure is linear with known  parameters

– Functional form of input spectral density known

– If assumptions are inaccurate – estimate of input spectral 
density inaccurate

• Future work

– Nonlinear system with non-Gaussian input

– Joint validation of system AND excitation models


