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P /-’ Motivation

 Many types of structures are subjected to random

environments

— Wind loads on buildings, sea loads on off-shore structures,
aerodynamic forces on flight vehicles, etc.

« Accurate prediction of structural dynamic response

requires:

— Validated models for structure (S) AND input (Q)

Input
Q(¢)

Structural Dynamic

System, S

Output

X(t)

* Most work in model validation is focused on S

* Our work is focused on validation of 0
— Many of these environments cannot be measured directly
— Data is always limited
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* Many structures subjected to random vibration
environments can be modeled as linear

« Some of those environments are approximately stationary

« We may know something about the general form of the
model for random excitation

* We can use this knowledge and the theory of linear random
vibrations to identify the parameters of an excitation model

 Validate the environment model following the procedures
used for the validation of the structural model
@ Sandia
National
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1. Structure is linear and model is accurate

— Allows us to focus on validation of the environment
model; this can be relaxed later

2. Structure is excited by a zero mean, stationary,
Gaussian, stochastic process input that cannot be
measured directly

— Because excitation is Gaussian, response is

Gaussian, and both can be fully characterized by
second-moment properties

3. We have measured structural responses

— They are free of measurement error .
ndia
— They have finite duration @ National
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For the sake of clarity we consider the random
vibration and excitation identification of a specific

structure: 4445
» Tapered-beam part is 434 %
modeled with beam
elements in FE code 1(17152 1240 420
* Three DOF 1 3 ll41
substructure is gL o @340

modeled with springs §
| masses / dashpots

* Loads applied at ) .
transverse beam DOF | m X(¢) + ¢ X(¢) + k X(t) = Q(t), —o00o <t < 0

Q represents (random) turbulent flow over the beam @ T
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 Stationary, Gaussian stochastic process can be
fully specified by its spectral density matrix

— Auto-spectral density characterizes distribution of
MS signal content in the frequency domain

— Cross-spectral density characterizes degree of
linear relation and average phase between two
processes

* Two-sided spectral density matrix of excitation is:

_SQlQl(w) SQle (w) T SQlQN (w)
SQle(w) SQ2Q2 ((,U) T SQQQN ((,U)
Sqq(w) = . . , . L —00 < w < 00
_SQNQl ((,U) SQNQz (w) T SQNQN (W)_
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* Theory of linear random vibration relates spectral
density matrix of inputs to spectral density matrix
of outputs/responses:

S () = Hyq () Sqq() [Hyqw)]

where

Hyo(w) = —w? [—w'm+iwc+ k]_l

is a matrix of FRFs
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« Consider a stationary, Gaussian excitation with
zero mean and one-sided spectral density matrix
of the form

Gaqaq(fe) = Go(fk) A(fe), k=0,...,ny =1

where Gy(f:) is the scalar ASD at each input
location, and A(f.) is a Hermitian matrix with
elements

A
A;j = exp (—a|ui — uj| + 27V -1 ul

Vo

),z’,jzl,...,N

Meanings ...? What is known and what is unknown?
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 Example #1
— One output signal available at midpoint of beam
— Can identify input ASD
— ldentification of environment model only

 Example #2
— Two output signals available (DOFs 10 and 30)
— Can identity input ASD and correlation length (o)
— ldentification and validation addressed
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* One output signal available (mid-point of beam)

— When response is measured at one location and
parameter o is known, we can identify ASD of
excitation at each input location

T
G, x, (i) = Golfi) Hy o (fi) A(fi) [Hy o ()]
1=1,...,N; k=0,...,ny -1

— Estimate noise due to finite-length output records
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xample #1: Identification

ASD of theoretical input

G,

1

10 10° 10°
Frequency, Hz

Resp40nse ASD w/ and w/o noise
10

1

10

Ga0,200)

noise ~ 2Mx3,,

1

10 10° 10°
Frequency, Hz

results
Effective FRF modulus squared
10°
AN
=
3
S
L 10
10"  10° 10’
Frequency, Hz
Estimated input ASD
10”
S
g
e
)
10"

1

10"  10° 10°
Frequency, Hz @ Sandia
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 Two output signals available (DOFs 10 and 30)
— When response is measured at two locations
and o is unknown, we can identify:

1. ASD of excitation at each input location, and
2. The value for o (correlation length)

T
G, %o, (i) = Golfi) Hg  q(f) A(f) [Hy  o(fi)]
Z:]_,,N’ k‘:(),’nf_]_

— We do this by minimizing error between
estimated response spectral density matrix
and spectral density matrix of response
excited by input with arbitrary parameters @ Sandia
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xample #2: Identification

results
DOF 10 DOFs 10, 30
10° 10°
ey P
%100 % 10°
O o
3 3
10 10
10" 10'  10° 10°
DOFs 10, 30 DOF 30
3 10°
> S
S 10
= @)
) a=0.1in""
-31 2 L3 1031 2 3
10" 10 10 10" 10 10

Frequency, Hz Frequency, Hz @ Natorel
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= /-' results

Estimated input ASD Estimated parameter o
0.2
10~ / -
< =
3 3 “V“q
o
-4 0
10 1 2 3
10" 10°  10° o 10 10

Frequency, Hz Frequency, Hz

* Accurate estimates for f > 100 Hz; inaccurate for f
<100 Hz

» System does not respond below 100 Hz (first
mode is 315 Hz) so irrelevant (see next slide) @Samﬁa
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- %ample #2: ldentification
= /-' results

* Response spectral densities — estimated from
measurements vs. computed from identified input

S S
% 10 %10
o O
10"  10° 10’ 10"  10° 10’
Frequency, Hz Frequency, Hz
3
$ 10
< O
3 L
10"  10° 10° 10" 10° 10° @San_dia
National
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Validation procedure

Validation of the Mathematical Model for a Stochastic Load

'

Experiment

A 4

Structural Model

|

Adequacy
Criteria

No:

Perform
more
experiments

2 >—>
OKs Yes: Use
model with

confidence

No:
Modify
adequacy
criteria

No:
Modify
model

3 Key Elements

1.  Output of
interest

2. Metric for
comparison

3. Adequacy
Criteria

Data for validation cannot be used for identification.
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* For Example #2, the following were estimated:
— Excitation spectral density, Go(fx), k=0,...,n5y —1

— Decay rate parameter, o, from the off-diagonal terms in
the excitation spectral density

* Given these quantities, other spectral measures of
structural response can estimated. For example:
— Spectral density of response at any location
— Cross-spectral densities

— Measures that are functions of auto- and cross-spectral
densities
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 Assume that response at DOF 44 is critical

- Estimate its spectral density from
— Finite measured data (blue)

— Estimated input parameters (red) 7
431t o
Spectral density at DOF 44 9.9
Il 42t[ qZOll
= 0 1/‘ f‘3 7/2 a¢ 41
% 10 ' 02 %40
© Z
10° An environment validation might
Frequency, Hz seek to infer validity of the input

model by comparing these two
curves, or a measure of the curves. @ Sandia
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e Example #2: Validation

* For example, we choose to compare the peak displacement
response PDF, a function of the spectral density

 Validation requirement: Mean and standard deviation of
peak response PDF based on identified input parameters
must be within ten percent of mean and standard deviation
based on measured data

* Let Z denote peaks in random response; its PDF is

;"

2 ! %
fz(z) =(1—-p )Uxm P (20&(1 —52)>

0z 0z — 22
0 () o ()

where @ is the standard normal CDF and 0 < <1 is the
“irregularity factor”

U?g {O for “broad-band” process

- « 9 Sandia
1 for “narrow-band” process @ National
Laboratories
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 The moments that form g are functions of the spectral
density:

1/2

ox=[[[exsar] " oc=[en [T Poxstnas] " ox=[en [ ranina]

* From direct estimates (measured data, blue)
ox = 6.675 x 107° in, oy =8.273 x 10~2 in/sec, o = 254.6 in/sec2 — [ =0.4739

* From the identified input model parameters (red)
ox =5.938 x 107" in, oy =8.565 x 1077 in/sec, oy = 281.2 in/sec2 = [ =0.439%4

% 10"
O

1 02 @ Sandia
National
Frequency, Hz Laboratories
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PDFs of peak response, Z
8000

6000
4000
2000

o)
-2 0 2

Z  x10%n)
* Mean and standard deviation based on direct estimates
(measured data)

Lz =3.369 x 107° in, o0z =5.294 x 107° in
 Mean and standard deviation based on identified input
model parameters
Lz =3.525x107° in, oz = 5.695 x 10™° in
» Latter moments within ten percent of former; therefore
excitation model is valid -
@ Sandia
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Conclusions

* Developed techniques for estimating model parameters of
excitation spectral density

— Guidelines sought

"--.-'_#

» Extended current validation procedures to consider models for
random vibration environments

 Assumptions
— Structure is linear with known parameters
— Functional form of input spectral density known

— If assumptions are inaccurate — estimate of input spectral
density inaccurate

* Future work
— Nonlinear system with non-Gaussian input |
— Joint validation of system AND excitation models @ Natorl
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