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Outline

- Extend laser-collision induced fluorescence diagnostic into higher
pressure application space

= Laser-collision induced fluorescence (LCIF) primer
= Calibration of alternative spectroscopic pathways
= Application of LCIF to transient positive column
= “Unexpected” non-monotonic radial distribution of 23P states
= Transport in magnetized plasma
= Conclusions and next steps
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LCIF is based on redistribution of excited
state by plasma electrons

= Laser excitation causes populates an intermediate state
= Relaxation processes deplete excited state

= Portion of excited state population gets redistributed into "uphill” states
= Driven by energetic species such as plasma electrons
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LCIF looks for changes in emission of neighboring
states after laser excitation
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Alternative spectroscopic pathways are investigated

= Atomic helium is utilized
= Spectroscopically “simple”, “well known” rates

- Radiation trapping of LIF becomes problematic at higher pressures and for
large volume plasmas

= Degrades spatial resolution of the diagnostic technique
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= Application of LCIF to transient positive column
= “Unexpected” non-monotonic radial distribution of 23P states

Transient positive column
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Pulsed Direct Current Discharges in Helium”, Appl. Phys. Lett. 102, 034104 (2013).
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Pulsed positive column is utilized to
benchmark LCIF technique

= Pulse discharge currents generate broad density range
- ~ 50 Microseconds, 80 GHz interferometer
= Compute drift velocities and extract electron temperatures
- Use measured currents, densities and published drift parameters
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“Unexpected” structure observed during
calibration of the LCIF diagnostic

= Off-axis peak excitation is observed in 23P species
- Electron densities remain peaked on-axis
Observed Behavior
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“Paradoxical” Nonmonotonic excitation

Various mechanisms might generate

observed behavior

= Observations similar to phenomena reported in literature
- Nonmonotonic excitation — non-local effects on EEDF (not for Helium)

- Gas heating and possible constriction — rarefaction and or non-linear effects
= Difficult to extrapolate to experimental results
- No direct one to one set of conditions between observed and reported behavior
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Predictive simulations guide understanding
of the observed trends

= Fluid based simulations emulate helium positive column

- Fluid plasma model (with Maxwellian and non-Maxwellian EEDF), gas heating, Poisson solver for radial
electrostatic potential, self -consistent simulation of axial electric field

- Different chemistry model(s) including stepwise ionization and collision-radiative effects
- Dynamic Regime of discharge operation with strong oscillations of the axial electric field
= Simulations capture qualitative behavior of the positive column
- Reasonable agreement in electron densities (1012 e/cm3), electron temperatures (2 eV) and E/N (~ 5 Td)
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significant contributor to observed behavior
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Fluid-based simulations predict non-monotonic profiles

m Structure of the transient column depends on o?erating conditions
- Non-monotonic profiles are observed at higher pressures and higher currents
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Distribution of 23P tracks relaxation of
global drift parameters

= Competition between creation and depletion of the excited state
- Higher E/N, T, — Center peaked 23P distribution
- Reduced E/N, T, — Non-monotonic or off axis 23P distribution
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= Application of LCIF to transient positive column

= Transport in magnetized plasma

Magnetized plasma
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A. A. Hubble, E. V. Barnat, B. R. Weatherford and J. E. Foster, “Plasma Leak Measurements in a
Magnetic Multi-Cusp Anode”, Plasma Sources Sci. Technol. 23, 022001 (2014)
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LASER DIAGNOSTICS DEVELOPED IN PSC
INTERROGATES MAGNITIZED PLASMA

e Plasma transport in magnetized plasma is important to understand but
challenging to assess

e Magnetic configuration dictates particle balance in the plasma

e Hosted Aimee Hubble (Ph.D. candidate w/ John Foster, U. Michigan) to
address fundamental questions about electron loss

e Segmented, magnetized anode to quantify plasma confinement
e LCIF to interrogate electron densities and measure leakage widths
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Measured electron densities, temperatures and magnetic fields are used to compute leak widths
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PLASMA TRANSPORT IS REGULATED BY
THE ANODE POTENTIAL

e Transient plasma enables access to different current collecting conditions

e Dial in potential drop between the anode and plasma
e Confinement degrades as electrode potential approaches plasma potential
e lon flux carries electrons across the magnetic fields
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e We intend to use these observations to foster new collaborations and efforts
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Summary

= LCIF extended to higher pressures by exciting from 23P
m Avoid radiation trapping
m Calibration shows good linearity over pressure range investigated

= Unanticipated radial structure in laser-interrogated 23P states
m Also observed in 23S states (not discussed)
m Discharge structure is correlated to changes to E/N (Creation and depletion)

m Electron leakage width is assessed with LCIF
m Electron loss scales with the hybrid radius
m Sheath structure is controlled with post-discharge bias
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