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Characterization of dynamic and structured 
plasma using laser-collision induced 

fluorescence
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Outline

 Extend laser-collision induced fluorescence diagnostic into higher 
pressure application space

 Laser-collision induced fluorescence (LCIF) primer

 Calibration of alternative spectroscopic pathways

 Application of LCIF to transient positive column

 “Unexpected” non-monotonic radial distribution of 23P states 

 Transport in magnetized plasma

 Conclusions and next steps
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LCIF is based on redistribution of excited 
state by plasma electrons

 Laser excitation causes populates an intermediate state

 Relaxation processes deplete excited state

 Portion of excited state population gets redistributed into "uphill" states

 Driven by energetic species such as plasma electrons

LCIF looks for changes in emission of neighboring 
states after laser excitation
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 Atomic helium is utilized

 Spectroscopically “simple”, “well known” rates

 Radiation trapping of LIF becomes problematic at higher pressures and for 
large volume plasmas

 Degrades spatial resolution of the diagnostic technique

Alternative spectroscopic pathways are investigated
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Excitation from 23S

Pumping less populated 23P state enables higher 
pressure interrogation
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E. V. Barnat and V. I. Kolobov, “Nonmonotonic Radial Distribution of Excited Atoms in a Positive Column of 
Pulsed Direct Current Discharges in Helium”, Appl. Phys. Lett. 102, 034104 (2013).



 Pulse discharge currents generate broad density range

• ~ 50 Microseconds, 80 GHz interferometer 

 Compute drift velocities and extract electron temperatures

• Use measured currents, densities and published drift parameters

Pulsed positive column is utilized to 
benchmark LCIF technique

6 J. L. Pack, R. E. Voshall, A.V. Phelps and L. E. Kline, J. Appl. Phys. V71, p5363 (1992)

Helium drift parametersPositive column

Observations made during calibration of the LCIF technique 
generated dialogue with collaborating institutions
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“Unexpected” structure observed during 
calibration of the LCIF diagnostic
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 Off-axis peak excitation is observed in 23P species

• Electron densities remain peaked on-axis

Observed Behavior

Interesting profiles… so what is happening?   

3.5 Torr Helium, 1.2 Amps



Various mechanisms might generate 
observed behavior
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Are these effects present in our experiment?

“Paradoxical” Nonmonotonic excitation
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 Observations similar to phenomena reported in literature

• Nonmonotonic excitation – non-local effects on EEDF (not  for Helium)

• Gas heating and possible constriction – rarefaction and or non-linear effects

 Difficult to extrapolate to experimental results

• No direct one to one set of conditions between observed and reported behavior

Gas heating or constriction
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Predictive simulations guide understanding 
of the observed trends
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 Fluid based simulations emulate helium positive column
• Fluid plasma model (with Maxwellian and non-Maxwellian EEDF), gas heating, Poisson solver for radial 

electrostatic potential, self -consistent simulation of axial electric field

• Different chemistry model(s) including stepwise ionization  and  collision-radiative effects 

• Dynamic Regime  of discharge operation with strong oscillations of the axial electric field

 Simulations capture qualitative behavior of the positive column
• Reasonable agreement in electron densities (1012 e/cm3), electron temperatures (2 eV) and E/N (~ 5 Td)

Gas heating does not appear to be 
significant contributor to observed behavior

Gas temperatures

1 Torr-cm3 Torr-cm 3 Torr-cm

Currents and fields Densities and temperatures



Fluid-based simulations predict non-monotonic profiles
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 Structure of the transient column depends on operating conditions

• Non-monotonic profiles are observed at higher pressures and higher currents
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Predicted non-monotonic behavior is not a 
kinetic effect
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Distribution of 23P tracks relaxation of 
global drift parameters
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 Competition between creation and depletion of the excited state

• Higher E/N, Te – Center peaked 23P distribution

• Reduced E/N, Te – Non-monotonic or off axis 23P distribution

Tuning E/N facilitates “dialing” of plasma chemistry
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Magnetized plasma

A. A. Hubble, E. V. Barnat, B. R. Weatherford and J. E. Foster, “Plasma Leak Measurements in a 
Magnetic Multi-Cusp Anode”, Plasma Sources Sci. Technol. 23, 022001 (2014)



LASER DIAGNOSTICS DEVELOPED IN PSC 
INTERROGATES MAGNITIZED PLASMA

 Plasma transport in magnetized plasma is important to understand but 
challenging to assess

 Magnetic configuration dictates particle balance in the plasma

 Hosted Aimee Hubble (Ph.D. candidate w/ John Foster, U. Michigan) to 
address fundamental questions about electron loss 

 Segmented, magnetized anode to quantify plasma confinement
 LCIF to interrogate electron densities and measure leakage widths

Measured electron densities Electron leakage widths 

10 mTorr 30 mTorr4 10 mTorr

 Measured electron densities, temperatures and magnetic fields are used to compute leak widths



PLASMA TRANSPORT IS REGULATED BY 
THE ANODE POTENTIAL

 Transient plasma enables access to different current collecting conditions

 Dial in potential drop between the anode and plasma

 Confinement degrades as electrode potential approaches plasma potential

 Ion flux carries electrons across the magnetic fields

 We intend to use these observations to foster new collaborations and efforts
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Summary

 LCIF extended to higher pressures by exciting from 23P

 Avoid radiation trapping  

 Calibration shows good linearity over pressure range investigated

 Unanticipated radial structure in laser-interrogated 23P states

 Also observed in 23S states (not discussed)

 Discharge structure is correlated to changes to E/N (Creation and depletion)

 Electron leakage width is assessed with LCIF

 Electron loss scales with the hybrid radius

 Sheath structure is controlled with post-discharge bias
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