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Motivation

The Problem:

Predictive Densification Modeling

•Compaction model is highly advanced

•Current sintering model is highly generalized
•Grain & pore size, & pore separation

•Microstructure heterogeneities

•Models are not linked

The Solution (partial):

•Determine weakness of current model

•Develop a detailed constitutive numerical model

Numerical Model              Finite Element Model
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The factors contributing to heterogeneity
development increase as the particle size is reduced 
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Packing and forming defects result in a 
heterogeneous microstructure

Heterogeneity Origins

• Density gradients

• Particle size distribution

• Agglomerates

Sintering Initiation
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Ideal

Sintering models do not address
the heterogeneity in real microstructures
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Can we make 
a constitutive 
model to 
predict this?

“Real” microstructure determines
the actual densification behavior

Current finite element sintering models:

R-S1 model is based on the repeat unit of classical sintering models

SOVS2 uses a viscous analogy

1Svoboda J, Riedel H, Zipse H Acta Metall. et Mater. 42 (2): 435-443 FEB 1994 
2Reiterer MW, Ewsuk KG, Arguello JG, J. Am. Ceram. Soc. 89 (6): 1930-1935 JUN 2006 
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TOSOH 3YB: 0.1 h TOSOH 3YB: 5 h

500 nm

Non-ideal structure
Multiple grains between pores
Pore elimination occurs during sintering

A fine grain size powder
with a hierarchical structure was chosen

to develop analysis tools 

500 nm
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Isothermal sintering experiments were
preformed to evaluate microstructure evolution 
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Image analysis reveals pore separation 
increases with isothermal sintering time

prior to grain growth
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Power law relationship does not fit the data
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Intercept length

λd

The intercept length overestimates the 
diffusion distance in aggregated structures

The flux equation: J=k(c)/λ. 

Longer distance, less mass transferred in limited time

: Intercept length :Diffusion shortcuts
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Microstructure can be uniquely
characterized using pore boundary tessellation

Pore Area (PA)
contained inside cell

Cell Area (CA). 

CA

PACA
SAF




Similar to construction of a Voronoi polyhedron 

A tessellation cell contain a pore and fractions of the surrounding grains

Sensitive to local arrangements of grains around the pore
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Pore boundary tessellation is powerful tool
for following microstructure evolution
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Dilation of tessellated images can be used 
to determine the effective diffusion lengths

Process SEM images into binary pore 
images.

Distance map with the tessellation cell 
boundaries obtained from pore 
images.

The tessellation cell boundaries fall at the 
maximum distance from all pores.

The grey scale of cell boundaries 
represent the distance between the 
pores. The dark, the further.
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A λdi is calculated for each tessellation 
cell, then the average value of λd is 
calculated for all cells
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The exponent may not represent a 
classical diffusion mechanism value

Many possible diffusion paths across
multiple grains between two pores

The effective diffusion distance calculated 
from pore boundary tessellation is a good 
measure of the controlling flux distance
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Can we make 
a constitutive 
model to 
predict this?

There are several possible approaches
to achieve more effective

and realistic finite element models 

Incorporation of the effective diffusion distance into existing models

Use pore boundary tessellation to validate microstructure evolution models 
to determine parameters for global finite element simulations
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Summary

Processing of ultrafine ceramic powders leads to 
heterogeneous microstructure evolution

Current numerical and FE models do not sufficiently 
account for heterogeneous microstructure evolution 

Effective diffusion distance is a better measure of 
scale than traditional grain size and pore size 
measurements

Can the effective diffusion distance be incorporated 
into a constitutive model for heterogeneous sintering?
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Can the effective diffusion distance and 
porosimetry be combined into an effective model?
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Heterogeneous Microstructures Are More 
Difficult To Characterize
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