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Motivation

The Problem: density distribution
in green compact
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Predictive Densification Modeling
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«Compaction model is highly advanced

*Current sintering model is highly generalized

*Grain & pore size, & pore separation
*Microstructure heterogeneities

*Models are not linked

current models
insufficient

The Solution (partial):

*Determine weakness of current model
*Develop a detailed constitutive numerical model shape after sintering
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Numerical Model —— Finite Element Model
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The factors contributing to heterogeneity
development increase as the particle size is reduced
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Packing and forming defects result in a
heterogeneous microstructure

Heterogeneity Origins

* Density gradients
 Particle size distribution
« Agglomerates
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Sintering models do not address
the heterogeneity in real microstructures
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“Real” microstructure determines
the actual densification behavior

Current finite element sintering models:
R-S'" model is based on the repeat unit of classical sintering models
SOVS? uses a viscous analogy
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' A fine grain size powder

with a hierarchical structure was chosen
to develop analysis tools
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Non-ideal structure
Multiple grains between pores
Pore elimination occurs during sintering
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Isothermal sintering experiments were

preformed to evaluate microstructure evolution
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«age analysis reveals pore separation
increases with isothermal sintering time
prior to grain growth
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Inter-pore distance is the actual scale
of the diffusion length not the grain size
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The intercept length overestimates the
diffusion distance in aggregated structures
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The flux equation: J=k(Ac)/A.

Longer distance, less mass transferred in limited time
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Microstructure can be uniquely
characterized using pore boundary tessellation

CA—- PA

SAF =
»‘@

Similar to construction of a Voronoi polyhedron

A tessellation cell contain a pore and fractions of the surrounding grains

Sensitive to local arrangements of grains around the pore @ ﬁgtnigi:]ial
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Pore boundary tessellation is powerful tool
for following microstructure evolution
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Dilation of tessellated images can be used
to determine the effective diffusion lengths

Process SEM images into binary pore
images.

Distance map with the tessellation cell
boundaries obtained from pore
images.

The tessellation cell boundaries fall at the
maximum distance from all pores.

The grey scale of cell boundaries
represent the distance between the
pores. The dark, the further.
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%e effective diffusion distance calculated
from pore boundary tessellation is a good
measure of the controlling flux distance

A M\, is calculated for each tessellation Many possible diffusion paths across
cell, then the average value of A, is multiple grains between two pores
calculated for all cells .
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‘ There are several possible approaches
to achieve more effective
and realistic finite element models

Incorporation of the effective diffusion distance into existing models

Use pore boundary tessellation to validate microstructure evolution models
to determine parameters for global finite element simulations
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: Summary

Processing of ultrafine ceramic powders leads to
heterogeneous microstructure evolution

Current numerical and FE models do not sufficiently
account for heterogeneous microstructure evolution

Effective diffusion distance is a better measure of
scale than traditional grain size and pore size
measurements

Can the effective diffusion distance be incorporated
into a constitutive model for heterogeneous sintering?
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Can the effective diffusion distance and
porosimetry be combined into an effective model?

Combined stage sintering

Two possible approaches , _
/ Master sintering curve

Microstructure & Properties:  Temperature-time profile:

f Oy oC,C,
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a: Chemical potential

: Pr 4 C.: Pore curvature
Stress intensification factor

é — —KG¢(m+1)/2Fm/2 /Gm
C,: Cell area

p=n(p)g(p)1=c,, /2)

y C,: Grain boundary diffusion area
C,: Diffusion distance
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rogeneous Microstructures Are More
Difficult To Characterize
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