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Motivation
Reservoir Optimization

v = −Kλ(s)∇p, ∇ · v = q

φ ∂ts +∇ · ( f (s)v ) = bq

Superconductor Vortex Pinning

Courtesy Argonne National Laboratory

γ(∂t + iµ)ψ = εψ − |ψ|2ψ + (∇− iA)
2
ψ

J = Im(ψ̄(∇− iA)ψ)− (∂tA +∇µ), ∇ · J = 0

Direct Field Acoustic Testing

−∆u − κ
2
(1 + σε)

2u = z



Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize
Physical
Model

Determine
Control
Action

Observe
Physical
System

Inverse
or OED
Problem

Update
Model

Make
Decision

We implement the control prior to observing the state.
Control is deterministic.



Optimization of PDEs with Random Inputs
Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ω; C), we consider

min
z∈Z

J(z) ≡ 1
2
σ

»Z
Ωo

(u(·, x ; z)− w(x))2 dx
–

+
α

2

Z
Ωc

z2(x) dx

where u(z) = u ∈ L2p
ρ (Ξ; H1(Ω)) solves the weak form of

−∇x · (ε(ξ, x)∇xu(ξ, x)) + N(u(ξ, x), ξ) = z(x), x ∈ Ω, ξ ∈ Ξ.

u(ξ, x) = 0, x ∈ ∂Ω, ξ ∈ Ξ.

I Random parameters ξ:
I Image space: Ξ ≡ Ξ1 × · · · × ΞM with Ξk ⊆ R
I Probability law: ρ ≡ ρ1 ⊗ · · · ⊗ ρM with ρk : Ξk → [0,∞) ∪ {+∞}

I Control space: Z ≡ L2(Ωc) Deterministic

I State space: U ≡ L2p
ρ (Ξ; H1(Ω)) Stochastic

I Risk Measure: σ : Lp
ρ(Ξ)→ R ∪ {+∞}

see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . . .



Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:

I Reduce variance or deviation

E[(X − E[X])2] or E[(X − E[X])q
+]

1
q

e.g. reduce uncertainty and variability in controlled system.

I Control rare events, tail probabilities, or quantiles

Pr[X ≤ t] or VaRβ [X] = inf { t ∈ R : Pr[X ≤ t] ≥ β }

e.g. reduce failure regions and certify reliability.

I Minimize over quantiles

CVaRβ [X] =
1

1 − β

∫
X≥VaRβ [X]

X(ξ)ρ(ξ) dξ = E[X |X ≥ VaRβ [X]]

e.g. minimize over undesirable events.



Risk Measures

RISK NEUTRAL:
σ[X] = E[X]

ξ

ρ(ξ)

ξ

X(ξ)

CONDITIONAL

VALUE-AT-RISK:
σ[X] = CVaRβ [X]

ξ

ρ(ξ) Pr[X ≤ t] = β

ξ

X(ξ) t = VaRβ [X]



Risk Measures
Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasev, . . .

σ : X → R ∪ {+∞} is a monetary risk measure if for X, Y ∈ L1
ρ(Ξ)

I Monotonicity: X ≥ Y a.e. =⇒ σ[X] ≥ σ[Y]

I Translation Equivariance: σ[X + t] = σ[X] + t, ∀t ∈ R
σ is a convex risk measure if

I σ is a monetary risk measure
I Convexity: σ[tX + (1− t)Y] ≤ tσ[X] + (1− t)σ[Y], ∀t ∈ [0, 1]

σ is a coherent risk measure if
I σ is a convex risk measure
I Positive Homogeneity: σ[tX] = tσ[X], ∀t > 0.

Examples of coherent risk measures with X ∈ X = L1
ρ(Ξ):

I Risk Neutral: σ[X] = E[X]

I Mean Plus Semideviation: σ[X] = E[X] + cE[(X − E[X])+], c ∈ (0, 1)

I Conditional Value-at-Risk: σ[X] = inf { t + cE[(X − t)+] : t ∈ R }, c > 1



Conditional Value-at-Risk

f (z; ξ) =
1
2

∫
Ωo

(u(ξ, x ; z)− w(x))2 dx +
α

2

∫
Ωc

z2(x) dx

Primal: Rockafellar and Uryasev
I Assume the CDF, i.e., Ψ(z, t) = Pr [ f (z) ≤ t ], is continuous w.r.t. t.
I Then,

min
z∈Z

inf
t∈R


t +

1
1− β

E[(f (z)− t)+]

ff
⇐⇒ min

(t,z)∈R×Z


t +

1
1− β

E[(f (z)− t)+]

ff
.

Dual: Fenchel duality
I CVaR is proper, lower semicontinuous, and convex.
I Moreover, CVaR is coherent and

min
z∈Z

inf
t∈R


t +

1
1− β

E[(f (z)− t)+]

ff
⇐⇒ min

z∈Z
sup
%∈A

Z
Ξ

%(ξ)ρ(ξ) dξ.

I A =
n

% ∈ (L1
ρ(Ξ))∗ : %(ξ) ∈

h
0, 1

1−β

i
ρ-a.e.,

R
Ξ

%(ξ)ρ(ξ) dξ = 1
o

.



Primal Approach
To discretize and solve optimal control problem, we . . .

I Use deterministic quadrature to approximation the expected value;
I Smooth ( · )+ to ensure convergence of quadrature approximation;
I Minimize reformulation of CVaRβ over R×Z.

Examples:

(x)+ε,1 = x + ε log
„

1 + exp
„−x
ε

««

(x)+ε,2 =

8><>:
0 if x ≤ 0“

x3

ε2 −
x4

2ε3

”
if x ∈ (0, ε)

x − ε
2 if x ≥ ε

(x)+ε,3 =

„
x +

ε

2

«+

ε,2



Smoothed CVaR Results

Results for smoothed plus function:
I (x)+ε,1 > (x)+ε,3 ≥ (x)+ ≥ (x)+ε,2 for all x ∈ R.

I |(x)+ε,` − (x)+| ≤ c`ε for all x ∈ R where c1 = log(2), c2 = 1
2 , and c3 = 3

32 .

Results for smoothed CVaR: σβ
ε,`[X] = inf

n
t + 1

1−β
E[(X − t)+ε,`] : t ∈ R

o
I
˛̨̨
σβ

ε,`[X]− CVaRβ [X]
˛̨̨
≤ c`

1−β
ε for all X ∈ L1

ρ(Ξ).

I Smoothed CVaR, σβ
ε,`, is a convex risk measure.

I X 7→
n

t + 1
1−β

E[(X − t)+ε,`]
o

is Hadamard differentiable.

I t 7→
n

t + 1
1−β

E[(X − t)+ε,`]
o

is continuously differentiable.



Smoothed-CVaR Optimal Control Results

I Existence of Optimal Controls: If the state equation is uniquely solveable, then
∃ a minimizer of

Jε,`(t, z) ≡
1
2

 
t +

1
1− β

E
"„Z

Ωo

(u(·, x ; z)− w(x))2 dx
«+

ε,`

#!
+

α

2

Z
Ωc

z2(x) dx

I Differentiability: Jε,`(t, z) is Hadamard differentiable w.r.t. z and continuously
differentiable w.r.t. t.

I Consistency: Suppose εk ↘ 0 and (tk,`, zk,`) is a minimizer of Jεk,`(t, z). Then,
∃ a subsequence of (tk,`, zk,`) which weakly converges to a minimizer of

J(t, z) ≡
1
2

 
t +

1
1− β

E
"„Z

Ωo

(u(·, x ; z)− w(x))2 dx
«

+

#!
+

α

2

Z
Ωc

z2(x) dx.

I Convergence Rate: Suppose (tε,`, zε,`) is a minimizer of Jε,`(t, z) and (t∗, z∗) is

a minimizer of J(t, z). Then, (|t∗ − tε,`|2 + ‖z∗ − zε,`‖2
Z)

1
2 ≤ C`ε

1
2 .



Quadrature Discretization

Replace expected values with quadrature approximation

EQ[X] =

QX
k=1

ωkX(ξk), σ
Q
ε,`[X] = inf


t +

1
1 − β

EQ[(X − t)+ε,`] : t ∈ R
ff
, and

JQ
ε,`(t, z) ≡

1
2

0@t +
1

1 − β

QX
k=1

ωk

 Z
Ωo

(u(ξk, x ; z)− w(x))2 dx − t

!+

ε,`

1A+
α

2

Z
Ωc

z2
(x) dx

Require the solutions u(ξk) = uk ∈ H1(Ω), k = 1, . . . , Q, solves the weak form of

−∇x · (ε(ξk, x)∇xuk(x)) + N(uk(x), ξk) = z(x), x ∈ Ω.

uk(x) = 0, x ∈ ∂Ω.

I Decoupled PDE system is equivalent to stochastic collocation for a single PDE
I Use favorite numerical PDE technique to solve deterministic PDEs
I Convergence of quad. approx. depends on regularity of state and adjoint w.r.t. ξ.

Existence of Optimal Controls: There exists a minimizer of JQ
ε,`(t, z) in the set

{ (t, z) ∈ R×Z : ‖z‖Z ≤ K } for any K > 0.
Add constraint because quadrature weights may be negative!



Dual Approach

Approximation: Add strongly concave regularization

max
%∈A

1
2

Z
Ξ

%(ξ)ρ(ξ)

Z
Ωo

(u(ξ, x; z)− w(x))2 dxdξ +
α

2

Z
Ωc

z2(x) dx−
γ

2

Z
Ξ

%2(ξ)ρ(ξ) dξ

where

A =


% ∈ (L1

ρ(Ξ))∗ : %(ξ) ∈
»

0,
1

1− β

–
ρ-a.e.,

Z
Ξ

%(ξ)ρ(ξ) dξ = 1
ff

.

First-Order Necessary Conditions: Robinson’s CQ holds and the maximal
density %γ satisfies

%γ(ξ) =
1
γ

„
1
2

Z
Ωo

(u(ξ, x; z)− w(x))2 dx− µ

«
+

„
1
γ

„
µ−

1
2

Z
Ωo

(u(ξ, x; z)− w(x))2 dx
««

+

−
„

1
γ

„
1
2

Z
Ωo

(u(ξ, x; z)− w(x))2 dx− µ

«
−

1
1− β

«
+

for all µ in some nonempty, compact interval Λ ⊂ R.
Consistency: For any γk ↘ 0, there exists a subsequence of maximal
densities %γk which weak∗ converges to the true maximal density %∗.



Optimal Control of Steady Burger’s Equation

Let α = 10−3, Ωo = Ωc = Ω = (0, 1), and w ≡ 1 and consider

min
z∈L2(0,1)

J(z) =
1
2

CVaRβ

[∫ 1

0
(u(·, x; z)− 1)2 dx

]
+

α

2

∫ 1

0
z(x)2 dx

where u = u(z) ∈ L3
ρ(Ξ; H1(0, 1)) solves the weak form of

−ν(ξ)∂xxu(ξ, x) + u(ξ, x)∂xu(ξ, x) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ, 0) = d0(ξ), u(ξ, 1) = d1(ξ) ξ ∈ Ξ.

Ξ = [−1, 1]4 is endowed with the uniform density ρ(ξ) ≡ 2−4, and the
random field coefficients are

ν(ξ) = 10ξ1−2, f (ξ, x) =
ξ2

100
, d0(ξ) = 1+

ξ3

1000
, and d1(ξ) =

ξ4

1000
.



Optimal Controls
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Left: Optimal controls. Center: VaR varying β. Right: CDF of tracking term.



Convergence of Smoothing
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Direct Field Acoustic Testing (DFAT)

I Physical Domain: D = (−5, 5)2

I Parameter Space: Ξ = [−
√

3,
√

3]M

I Probability Measure:

ρ(ξ)dξ =
“

2
√

3
”−M

dξ

I Stochastic Material: ε(ξ, x)
KL expansion of Matérn covariance

I Desired State: θ = π
4 , k = 10

w̄(x) = exp (i ((k cos θ)x1 + (k sin θ)x2))

D

DC

R

50−5

0

5

−5

Let α > 0 and ϑ = 0.1. Consider the optimal control problem

min
z∈L2(D;C)

1
2
σ

"Z
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx

#
+

α

2

Z
Dc

z(x)z(x) dx

where u = u(z) ∈ L2
ρ(Ξ; H1(D; C)) solves

−∆u(ξ, x)− k2(1 + ϑε(ξ, x))2u(ξ, x) = z(x) ∀ (ξ, x) ∈ Ξ× D
∂u
∂n

(ξ, x) = iku(ξ, x) ∀ (ξ, x) ∈ Ξ× ∂D.



Results: M = 6, γ = 5, and α = 10−4

J (ξ, z) =

Z
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx.
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� Mean value: ξ ← E[ξ] � Mean plus CVaR: σ[X] = 1
2 E[X] + 1

2 CVaR0.1[X]

� Risk neutral: σ[X] = E[X] � CVaR: σ[X] = CVaR0.1[X]

Mean plus CVaR Value-at-Risk: t = 6.59073
CVaR Value-at-Risk: t = 6.90629



Results: The Effect of Smoothing - CVaR

Smoothed Plus Function

x
−2 −1 0 1 2

1

2 ℘(x, γ)
VaR Approximation

log2(γ)
0 1 2 3 4

t

6
6.5

7 6.9

γ ‖z‖Z Abs. Err. Rate t Abs. Err. Rate
1 37.8369 - - 5.9792 - -
2 37.0495 1.2177 - 6.7004 0.7212 -
4 36.7416 0.7111 0.7760 6.8258 0.1254 2.5239
8 36.6653 0.4396 0.6939 6.9066 0.0808 0.6341

Theoretical convergence rate is 1
2 (Kouri and Surowiec).



Conclusions:

I Primal and dual formulations of CVaR
I Primal: Use reformulation, deterministic quadrautre, and smoothing
I Can prove consistency for smoothing and explicit convergence rate
I Dual: Add strongly concave regularization and formulate opt. conditions
I Can prove consistency of regularized solution

Future Work:

I Coherent risk measures for risk-averse optimization under uncertainty
(Ruszczynski, Shapiro, Rockafellar, Uryasev, Föllmer, Schied, ...)

I Probabilistic constraints to control tail-probabilities and rare events
(Shapiro, Uryasev, Henrion, Kibzun, ...)

I Ambiguous stochastic programming to incorporate data
(Shapiro, Bertsimas, Bayraksan, ...)

min
z∈Z

sup
P∈M0

Z
Ξ

f (u(z; ξ), z, ξ) dP(ξ)
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