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Motivation

Reservoir Optimization Superconductor Vortex Pinning
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Direct Field Acoustic Testing
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Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize Determine Observe Mak
Physical Control Physical Deceilsi?)n
Model Action System
' !
: A
Inverse
R
Problem

We implement the control prior to observing the state.
Control is deterministic.
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+.-Optimization of PDEs with Random Inputs

Given a >0, Q, C Q, Q. C Q, and w € L?(Q; C), we consider

min [(z) = 10 {/Qy(u(-,x;z) —w(x))? dx} + %/Q 2% (x) dx

zEZ 2
where u(z) = u € LY (Z; H(Q)) solves the weak form of

7vx ! (e(E,x)qu(f,x)) +N(M(E,X),£) = Z(x)7 X e Q? E €=
u(¢,x) =0, x €, &€&

» Random parameters ¢:

» Image space: Z==Z; x--- x Ey with £, C R

> Probability law: p=p1 ® -+ ® pm With p : 5 — [0, 00) U {+0o0}
» Control space: Z = L*() Deterministic
> State space: U/ =LY (Z;H'(Q)) Stochastic

» Risk Measure: o : L},(Z) — RU {+o0}
see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . ..
@ lﬁaggig:tﬁatlnies




Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:
» Reduce variance or deviation
E[(X-EX])? or  E[(X-EX),)
e.g. reduce uncertainty and variability in controlled system.
» Control rare events, tail probabilities, or quantiles
Pr[X <] or VaRg[X]=inf{teR :PriX<t >4}
e.g. reduce failure regions and certify reliability.

» Minimize over quantiles

1

Rp[X] = ——
CVa ﬁ[ ] 1_18 X>VaRg[X]

X(&)p(€) dE = E[X[X > VaRg[X]]

e.g. minimize over undesirable events.
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Risk Measures

RISk NEUTRAL: i
o[X] = E[X] X(€)

3
p(&)  PrX<t =8
CONDITIONAL ‘ | — ¢
VALUE-AT-RISK:
o[X] = CVaRg[X] X&) t=VaRy[X]
3 i ¢
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—— !
Risk Measures

Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasey, . . .

o : X — RU {+oc} is a monetary risk measure if for X, Y € L},(E)

» Monotonicity: X >Y ae. = o[X] > o[Y]

» Translation Equivariance: o[X+t]=0[X]+t, VieR
o is a convex risk measure if

> o is a monetary risk measure

» Convexity: o[tX+ (1—1)Y] <to[X]+ (1—1t)o[Y], Vte]0,1]
o is a coherent risk measure if

> o is a convex risk measure

» Positive Homogeneity: o[tX] =to[X], Vt> 0.

Examples of coherent risk measures with X € X = L}(2):
» Risk Neutral: o[X] = E[X]
» Mean Plus Semideviation: o[X] = E[X] + cE[(X — E[X])+], ¢ € (0,1)
» Conditional Value-at-Risk: o[X] =inf {t + cE[(X —t)4] : te R}, ¢ >1
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Conditional Value-at-Risk

f@O =3 [ Wexiz) - w@P der § [ 2 dx

0

Primal: Rockafellar and Uryasev
» Assume the CDF, i.e., ¥(z,t) = Pr[f(z) < t], is continuous w.r.t. t.
» Then,

min inf {t + 1%IE[(f(z) - t)+]} = ( min {t—l— 1%IE[(f(z) - t)+]} .

ZEZ tER 8 t,2)ERX Z Jé)

Dual: Fenchel duality
» CVaR is proper, lower semicontinuous, and convex.
» Moreover, CVaR is coherent and

mininf{t—i— ﬁE[(f(z)—tH]} <= minsup [ o({)p(§)dE.

z€Z teR z€Z 0EAJE

> A={oe L@ : o(©) € 0,155 pae. [o(©p(©)ds=1}.
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v Primal Approach

To discretize and solve optimal control problem, we . ..
» Use deterministic quadrature to approximation the expected value;
» Smooth (- )4 to ensure convergence of quadrature approximation;

» Minimize reformulation of CVaRs over R x Z.
Examples:

(x):l =x+elog (1 + exp (?))
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Smoothed CVaR Results

Results for smoothed plus function:
> (01> @ > @)+ > W], forallxeRr.

> |(x)6’5 — (X)4] < cpe forall x € Rwhere ¢; =log(2), c; = %, and ¢z = %

Results for smoothed CVaR: afyZ[X] = inf {t +2gE(X =D ,] s te ]R}

o2 1X] - CVaRB[X]‘ < (%3¢ forall X € LL(2).
» Smoothed CVaR, afz, is a convex risk measure.
> X {t + ﬁE[(X t)+£]} is Hadamard differentiable.

>t {t + ﬁ]E[(X - t)g,g]} is continuously differentiable.

Sandia
National
Laboratories



Smoothed-CVaR Optimal Control Results

» Existence of Optimal Controls: If the state equation is uniquely solveable, then

3 a minimizer of
_1 1 N 2 + o 2
Jeult2) =1 <t+1_ﬂlﬁ {(/Qo(u(-,x,z) wfar) > +5 ), 2ear

> Differentiability: ]. ,(t,z) is Hadamard differentiable w.r.t. z and continuously
differentiable w.r.t. .

> Consistency: Suppose ¢, \, 0 and (f ¢, z,¢) is @ minimizer of J., ,(t,z). Then,
3 a subsequence of (t 4,z ,) Which weakly converges to a minimizer of

(/Qu(u(-,x;z) —w(x))? dx)Jr > —+ % /QC 2% (x) dx.

» Convergence Rate: Suppose (t ¢,zc ¢) is @a minimizer of J. ,(t,z) and (t*,z*) is
e 1 1
a minimizer of J(t,z). Then, (|t* — tc ¢ + ||z* — ze 0]|%)2 < Cee2.

1 1
](t,Z) = E <t+1—ﬁ
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Quadrature Discretization

Replace expected values with quadrature approximation

Q
Eo[X] = > wiX(&), 0% ,[X] = inf {z+ ﬁEQ[(X—t):Z] ite R}, and
k=1

Q + «
Igyg(t,z) = % <t+ ﬁ D> w </Q (u(&e, x5 2) — w(x))? dx — t> ) +5 /Q 2 (x) dx
0 E,Z c

k=1

Require the solutions u(&;,) = u; € H'(Q), k= 1,...,Q, solves the weak form of
—Vi - (€(&, x) Vatg(x)) + N(ug(x), &) = z(x), xeN
ug(x) =0, x € 9.

» Decoupled PDE system is equivalent to stochastic collocation for a single PDE
» Use favorite numerical PDE technique to solve deterministic PDEs
» Convergence of quad. approx. depends on regularity of state and adjoint w.r.t. £.

Existence of Optimal Controls: There exists a minimizer of ]fe(t7z) in the set
{(t,z) ERx Z : |z|]|lz <K } forany K > 0.
Add constraint because quadrature weights may be negative!
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ol Dual Approach

Approximation: Add strongly concave regularization

max 5 [ e©0©) [ e xa —wifdxdc+ 5 [ 2@ae-] [ ende

where

a={ecw@r a0 e o] rae. [o@n@ac=1}.

First-Order Necessary Conditions: Robinson’s CQ holds and the maximal
density o satisfies

0@ = (3 [ e - weiar—u)

Qo

# (5 (nm g [ e —ocrar))

(2 fea-srans) ).

for all u in some nonempty, compact interval A C R.

Consistency: For any 7 \ 0, there exists a subsequence of maximal
densities p,, which weak™ converges to the true maximal density o*.
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Optimal Control of Steady Burger’s Equation

Leta =103, Q, = Q.= Q= (0,1), and w = 1 and consider
1 . 1
/ (u(-,x;z) — 1)* dx| + —/ z(x)? dx
0 2 0

where u = u(z) € L}(Z;H'(0,1)) solves the weak form of

1
i = -CVaR
ze%}%gl) ](Z) 2 axe

(&) O0nxtt (&, %) +u(&, x)0xu(€,x) = f(§,x) +2(x)  (§,x) €ExQ,
u(&,0) =do(¢), u(&,1)=di(¢) EekE.

Z = [~1,1]* is endowed with the uniform density p(¢) = 274, and the
random field coefficients are

&
100

£
1000’

&4

v(€) =102 f(¢x) = 1000°

do(§) =1+

and di(¢) =
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Optimal Controls
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Left: Optimal controls. Center: VaR varying 5. Right: CDF of tracking term.
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Convergence of Smoothing

10 10°
107
ot
_ ~ =10
S 5107 . %
] =
o i v=-0.67."". s =083 -
o ~N 1073 Sel = v=-0.83-""_
x 10 . g .
> 10
107
8| 5| -6
1 10
1075 3 5 5 05 2

2 2
-log(e) ~log(e)

=01, 5=05 £=09

Left: Error in the VaR. Center: Error in optimal controls. Right: Total error.
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Direct Field Acoustic Testing (DFAT)

5

> Physical Domain: D = (-5,5)?
> Parameter Space: = = [—/3,V3]1 ol
> Probability Measure:

p©)ds = (2v3) " de
> Stochastic Material: ¢(¢, x)

KL expansion of Matérn covariance

> Desired State: 0 = 7,k =10
w(x) = exp (i ((kcos 0)x1 + (ksinB)xz)) -5
-5 0 5

o

Let « > 0 and ¥ = 0.1. Consider the optimal control problem

min 20 [ / {0z, %) — RO EE D)~ 000 dx| + / 209209 d
where u = u(z) € L3(Z; H'(D; C)) solves
—Au(&,x) — kz(l + 196(&,x))2u(£,x) = z(x) YV (&,x) €ExD

ou . =
So(6x) = iku(€,v) Y (6,x) € Z x OD.
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Res#tS: M =6,v=5,and a =10

J(&2) = /D (u(z; €, %) — () (u(z &, x) — w(x)) dx.

R

0.3] 1
0.8]
0.2]
w 0.6
5 s
(8]
o4 0.4]
0.2
Yo 0 10 20 30 0% 5 10 15 20
T(,2) J(&2)
B Mean value: ¢ «— E[¢] B Mean plus CVaR: ¢[X] = 1E[X] + 1CVaRo.1[X]

W Risk neutral: o[X] = E[X] M CVaR: ¢[X] = CVaRg1[X]

Mean plus CVaR Value-at-Risk: ¢ = 6.59073
CVaR Value-at-Risk: t = 6.90629
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Results: The Effect of Smoothing - CVaR

Smoothed Plus Function VaR Approximation
29 plx7)

loga ()

\
N

I
—_
O«
—_
N

| llzllz  Abs.Err. Rate | ¢ Abs. Err.  Rate

-
1 | 37.8369 - - 5.9792 - -
2 | 37.0495 1.2177 6.7004 0.7212
4
8

36.7416  0.7111  0.7760 | 6.8258 0.1254  2.5239
36.6653 0.4396 0.6939 | 6.9066 0.0808 0.6341

Theoretical convergence rate is % (Kouri and Surowiec).
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Conclusions:

» Primal and dual formulations of CVaR

» Primal: Use reformulation, deterministic quadrautre, and smoothing

» Can prove consistency for smoothing and explicit convergence rate

» Dual: Add strongly concave regularization and formulate opt. conditions
» Can prove consistency of regularized solution

Future Work:

» Coherent risk measures for risk-averse optimization under uncertainty
(Ruszczynski, Shapiro, Rockafellar, Uryasev, Félimer, Schied, ...)

» Probabilistic constraints to control tail-probabilities and rare events
(Shapiro, Uryasev, Henrion, Kibzun, ...)

» Ambiguous stochastic programming to incorporate data
(Shapiro, Bertsimas, Bayraksan, ...)

min sup [ f(u(z€),2,.6)dP©)
0

2€Z peM, =
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