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Abstract
Moiré contouring can be implemented by illuminating the object with coherent light from two closely spaced
point sources—the so-called “two point” method. This method can be implemented using digital speckle pattern
interferometry techniques (DSPI) by illuminating the object with a single point source that is moved between
datasets. We briefly present the algorithm used and some inherent implicit and explicit assumptions in using the
technique. One of the assumptions is that the object remains stationary between datasets. If violated, this quite
strong assumption will create hundreds of microns of error from fractions of a micron of object motion. We
present simulations and experiments demonstrating these sensitivities and two techniques to compensate for
object motion during data acquisition.

1. Introduction
The use of optical techniques for surface topography measurement, or “contouring”, has been studied
extensively. The advantages are fairly obvious: non-contact and wide-field measurements can be made on
delicate objects with sizes ranging from micro to huge, by applying the appropriate optical configuration. One
technique that dominates this field is geometric moiré, which relies on a grid or grating projected on the object.
The resulting image of this grid is a function of the surface shape. It can be analyzed directly, using phase
stepping techniques, or compared with a reference grating, in true moiré fashion [1,2]. One way to generate a
projected grating is by illuminating the object with coherent light from two closely spaced point sources—the so-
called “two-point” method. It is important to realize that in all of the projected grid techniques, the surface
topography information is carried by the image intensity, even when coherent light is used to produce the grid
rather than a projected grid.

Our implementation was driven by the need to accurately measure the deformation of an object—which
suggested using electronic/digital speckle pattern interferometry (ESPI or DSPI). A secondary requirement was
to measure the preliminary shape of the object. Rather than use two different techniques, it was decided to use
the same equipment for both measurements. Several authors have pointed out that ESPI or holographic
techniques can be used to measure surface contour. Thalman and Dandliker [1] review various techniques: The
two-wavelength technique generates contour fringes with a contour interval relative to AA. It can be
experimentally difficult to implement, requiring either a tunable laser with slight wavelength variation, or
immersion of the object in media with different index of refraction. Other authors implement a “two-source
illumination” to generate two closely spaced illumination points sequentially with two separate ESPI exposures,
which is closely related to the two-point grid projection technique mentioned previously. Joenathan, et al [2]
rotate the object between ESPI exposures, which is equivalent to moving two illumination beams between
exposures. Rodriguez-Vera et al [3] analyze contour fringe generation by motion of two illumination beams.
Wang, et al [4,5] analyze fringe generation by motion of a single illumination point, and suggest the convenience
of combining such a contour measurement with ESPI deformation measurements. The papers by Wang, et al
were our original inspiration for this work, and our notation will in part follow theirs.

All of the two-source methods mentioned above make some assumptions to simplify the analysis process—
many of these are implicit. One of the assumptions is that the object does not move between ESPI exposures
made for contouring. This turns out to be a fairly strong assumption, and in our particular case was a condition
impossible to realize. We therefore describe some possible solutions to the problem of object motion during
ESPI based two-point contouring.

2. Experimental Configuration
Figure 1 shows the experimental configuration of a standard out-of-plane ESPI configuration. A beam splitter is
placed between the lens and the camera sensor to allow the insertion of a reference beam with the object beam
launched from the fiber off to the side. Phase shifting is accomplished via a fiber stretcher on the reference leg
used with a Carré algorithm to calculate the phase. The object beam is mounted on a stepper motor to move the
beam a known amount for creating the two-illumination configuration required for contouring. As ESPI is well
understood, no more will be said regarding this aspect other than to note that in this configuration, nearly
identical hardware and software can be used for both deformation and contouring measurements.
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Figure 1. ESPI contouring and out-of-plane deformation measurement setup.

Figure 2 shows simplified diagrams of the experimental contouring geometry for both the case without object
motion on the left and with object motion on the right. The illumination source S is assumed to lie in the Y = 0
plane. Between exposures, the illumination source is translated by vector d with components (u,w). In general,
the object point P might move between exposures by vector &. Vector k is the ESPI sensitivity vector.
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Figure 2. Problem geometry. Left diagram assumed without object motion. Right diagram shows
a more detailed geometry for contouring analysis with object motion. Source location S
and motion vector d are in X-Z plane, d is perpendicular to R,.

If, for the moment, we assume that the object is stationary between exposures (& = 0), then the left side of

Figure 2 describes the contouring situation. The source is translated by d between exposures, creating an
optical path difference (OPD) of

OPD= NA=@/k =|R,|- R, (1)

By expanding R, | =R, +d| we see that



NA=-deR, (2)
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Where R, = —1 s a unit vector in the direction of Ry. This requires the assumption that |d| << |R1| , and
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introduces an error in OPD of order .——— . A similar assumption is made in ESPI deformation analysis, that

Ry
|5| << |R1| . However in ESPI, this is not nearly as strong an assumption, simply because |5| , the deformation,

tends to be on the order of microns, while |d| , the motion imposed on the illumination source tends to be larger,
perhaps hundreds of microns.

Wang, et al [4,5] point out that the solution for z can be simplified if the coordinate system is chosen so the
source S and source translation vector d are in the X-Z plane, and d is perpendicular to Ry, the vector from the
source to the origin. (The latter causes the zero fringe to go through the origin, making possible the identification
of absolute fringe order N). They derive a quadratic solution for the object topography z:

z:zs+i[—bi\/b2—4ac] ®3)
2a

Where
a=1-(NL/w)
b=-2tan0(x - x,)
c =tan? 0(x — X, )2 — (NL/w)?|(x = x,)? +y?|

And u and w are the components of d = (UX +Wz) and 8 is the angle between Ry and the x-axis.

Choosing the correct root in equation 3 can be difficult. Wang [4] claims that the positive root can be selected
whenever NA 2 0, but this is incomplete. The positive root is selected whenever the product of NA*w is less than
zero (note that in Wang’s “standard” configuration, depicted in Figure 2, w is less than zero). This extended
criterion handles the situation where x; is less than zero.

Other authors have suggested techniques for finding the OPD. Thalmann and Dandliker [1] correct for the effect
of perspective viewing from a finite distance. Their final solution cannot be rendered as a closed form quadratic,
but must be solved iteratively. Another method assumes that the distance to the illumination sources are
sufficiently large relative to the object size that the illumination can be considered plane waves [3]. This requires
the strongest assumptions and leads to the simplest analysis, but introduces unacceptably large errors for our
particular geometry.

3. Simulations
We chose to simulate the Wang technique described above to better demonstrate the errors resulting from the
various assumptions—especially the effect of object motion and our proposed corrections for this motion. The
motivation for this work was measurement of both initial contour and electrostatically programmed deformation
of a thin polyvinylidine fluoride (PVDF) film being developed for adaptive optics. The experimental geometry
defined reasonable parameters and was used for our simulations. A square sample with sides of 87.2 mm was
illuminated with a doubled YAG laser with A = 0.532 pm, with an illumination distance R of 615 mm at an angle
of 22 degrees from the normal to the sample. The sample was not flat, with an estimated deviation from a plane
of a few mm. This was matched in the simulation by a surface with a few polynomial lumps in it..

We generated the actual path difference according to equation 1, and then used it in equation 3 to estimate the
surface contour shown on the left of Figure 3. By subtracting the estimate from the actual surface, we can get
the error estimate for the technique, as shown on the right of Figure 3. A planar error is introduced by the



asymmetry caused by assuming d is perpendicular to Ry and therefore cannot be perpendicular to R, with x at
the origin.
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Figure 3. Simulated surface and resulting error surface using quadratic estimate.

If we fit a plane to the result, the error is reduced a bit as shown in left of Figure 4. In either case, the error is on
the order of a few microns.

To verify that this is indeed algorithm error and not computational (roundoff) error, increasing R by an order of
magnitude gives the much smaller error estimate shown in the right image in Figure 4.
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Figure 4. Error after plane removed from estimate and error with R increased by 10 times.

To estimate realistic accuracy in the presence of noise-induced phase errors, we can add a random phase error
to the simulation. Adding a uniformly distributed path length error of /20 gives an estimated contour as shown
in Figure 5, which has an error standard deviation of 0.3mm. This error, resulting from an admittedly
conservative estimate of process noise, clearly dominates any error induced by the above estimates in algorithm
derivation.
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Figure 5. Surface estimate and error with A/20 noise.

As mentioned in the introduction, one of the motivations for these simulations was to investigate the effects of
sample motion during contouring measurement. Our original experimental goal was to measure both gross
contour (possibly mm deviations from planar) and PVDF deformation (typically tens of microns for the drive
levels we were using). Both of these measurements are out-of-plane (z) deviations, so we set up our ESPI
system for out of plane deformation measurement (see Figure 1), and intended to make the contour
measurement by moving the illumination source while keeping the drive voltage constant. Unfortunately, very
small amounts of sample drift between contour datasets cause a large contour error, due to the sensitivity of the
method to out-of-plane motion. To simulate this, we introduced a drift model. Equation 2 must be modified to
include sample motion, as shown on the right of Figure 2:

NA=-deR;+ked (4)

Since the sample is allegedly fixed at the edges, we chose to model drift by a parabolic out-of-plane deformation
fixed at the corners. (Note that our algorithm assumes the zero fringe passes through the origin, which causes
the z=0 point at the origin.) Even a tiny amount of drift, maximum of 0.2 ym in this example, causes an
unacceptable error in contour as shown in Figure 6.
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Figure 6. Contour result from simulation including drift and the resulting error surface.

4. Drift correction experiments
We suggest two possible methods to correct for sample drift; the first uses an assumption of constant drift
during the experiment and the second arranges the system to be insensitive to out-of-plane motion. By



monitoring real-time ESPI fringes, and by measuring velocity of the sample center using a laser Doppler
velocimeter (LDV), we determined that the sample drift was fairly constant over short times (a minute or so). To
use the “constant drift” compensation method, three ESPI datasets are taken, moving the source from position 1
to position 2 (giving phase difference measurement 1), then back to position 1 (giving phase difference
measurement 2). Taking the difference between the first and second phase difference measurements, we can
subtract the k-8 term from equation (4) and end up with 2NA to use in our contouring algorithm, equation (3).

Of course, the contouring algorithm relies only on the total change in optical path length, as recorded by ESPI
techniques. While a “reference beam” is necessary to make this measurement, it is not necessary that this
reference be arranged to be sensitive to out-of-plane motion. If the reference beam is, instead, arranged to
illuminate the object from a direction symmetrically opposed to the illumination beam, (in standard “in-plane”
sensitivity mode with sensitivity vector k perpendicular to the Z axis), the ESPI system will be totally insensitive
to out of plane motion. While this is less convenient for our particular application, it should solve the drift
problem if our drift is primarily out-of-plane.

To experimentally verify these two methods, we generated a sample that is a bit more controllable than the
PVDF film. A few strategically placed blows with a ball-peen hammer on a 1/16 inch sheet of aluminum created
some lumps in the mm range to mimic our PVDF film. We used a commercial digital image correlation (DIC)
system [6] to measure the contour of the aluminum sample as a comparison to our ESPI contouring method.
The two results are shown in Figure 7.

Figure 7 compares the ESPI and DIC contours. While they agree within a few tens of microns around the lumps
in the center, there are edge effects we have not identified—either filtering in the ESPI algorithms, edge effects
in the DIC algorithms, or possibly both.
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Figure 7. Aluminum plate comparison between ESPI contouring, DIC data and difference plot.

We introduced a drift by pushing on the back of the sample with a speaker coil driven by a constantly increasing
current. The ramp was adjusted to provide a few fringes per second and was not calibrated, since only small
constant drift was required. An ESPI deformation measurement taken with a few seconds between exposures
shows the drift deformation in Figure 8. Figure 8 also shows the result of contouring with sample drift, without
compensation. A few microns of drift cause many mm of contour error.
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Figure 8. Drift deformation shape (left), contour data with drift uncompensated (right)



Figures 9 and 10 compare the results of the two drift compensation techniques applied to the cal plate with
constant drift.
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Figure 9. Contouring with constant drift compensation (left) and error (difference between ESPI
contour and DIC contour).

ESPI Contour ESPI - DIC contour
-40 4 3 -40
0.5
_20 E . -20 E
E 0 0 5 € 0 05 -
- ‘ % o L%,
20 8 20
40¢ 05 40 ‘
-40 20 0 20 40 40 20 0 20 40
X, mm X, mm

Figure 10. Contouring with in-plane drift insensitive configuration (left) and error (difference
between ESPI contour and DIC contour).

Using the PVDF film for contouring, some measurements of the repeatability were done by making four
independent measurements and then calculating, on a pixel-by-pixel basis the mean contour and the RMS error.
Figure 11 shows the results with the out-of-plane sensitivity vector using the two-measurement compensation.
Figure 12 shows results from 4 datasets where the sensitivity vector is in-plane, which we thought would be the
“pest” results. The RMS image gives an indication of how consistent the results are, but of course we don’t know
the “correct” answer in this case so this is not an error image.
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Figure 11. Two-measurement drift compensated results of PVDF film and RMS error.

The two-measurement method actually shows a bit better consistency than the in-plane sensitivity vector
method. (This could be due to the fact that this measurement actually relies on twice as many independent
measurements as the in-plane method, thus introducing more averaging). In either case, we see a consistency
of a few tens of microns—clearly the absolute error is no less than this, hopefully it is not much greater. RMS
values calculated with no compensation are on the same order and clearly demonstrate that the RMS error is
not an indication of accuracy, but repeatability.

ESPI contour ESPI RMS, owerall: 0.02099

0.08

02 ¢
E 0.06 £
s -

0 % 0.04%
o 0.02

-0.2

40 -20 0 20 40 40 -20 0 20 40
X, mm X, mm

Figure 12. PVDF contour measured with insensitive alignment and RMS error.

5. Conclusions
We have investigated some assumptions inherent in various ESPI contouring algorithms, and the error
magnitudes resulting from these assumptions. We conclude that, for practical geometries (object a few tens of
mm in size, optical distances a few hundred mm) the quadratic algorithm presented by Wang, et al provides
accuracies to a tenth of a percent, provided the object is totally stationary during the data acquisition. In this
case, errors introduced by even modest amounts of phase noise are much greater than the errors caused by the
assumptions in the algorithm derivations. We pointed out that object motion can be a serious problem in these
measurements, since the contour distance is highly sensitive to changes in optical path length. We presented
two techniques to compensate for object motion, if the motion is relatively constant over the period of data
acquisition and validation experiments of these techniques.
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