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Mesh Generation Needs

Computational Modeling Sciences Department

“Ironically, as numerical analysis is applied to larger and
more complex problems, non-numerical issues play a larger
role. Mesh generation is an excellent example of this
phenomenon. Solving current problems in structural
mechanics or fluid dynamics with finite difference of finite
element methods depends on the construction of high-
quality meshes of surfaces and volumes. Geometric design
and construction of these meshes are typically much more
time-consuming than the simulations that are performed
with them.”

« John Guckenheimer, “Numerical Computation in the
Information Age” in June 1998 issue of SIAM News.
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Setup Time: A Key Problem

Computational Modeling Sciences Department
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*Typical case for hexahedral meshes
Months on Sandia National Laboratories geometries
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DTA Process Map
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Hexahedral Meshing

Computational Modeling Sciences Department

Given a geometric representation ... create an alternate geometric representation
of an object, G,... consisting of hexahedral elements...

Unfortunately, there is only a limited class of geometries for which hexahedral meshing
(pave and sweep) can be automated with current tools/algorithms. So...

|V|°Od6| Creation . Decomposition for Hex Meshing Hex Meshing
25% of DTA time 32% of DTA time* 14% of DTA time*
Howeve/r’ decomposition for pave-sweep is more art than science... ﬁ:%dial
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Models get more complex over time...

Computational Modeling Sciences Department

As model complexity increases, decomposition for
pave-sweep quickly becomes intractable...

ca. 1988 ca. 1995 ca. 1998 ca. 2000

200 dof 40,000 dof

Shellshock 2D NASTRAN i
800K dof >10M dof
MP Salinas MP Salinas
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Capacity and Resolution

Computational Modeling Sciences Department

ca. 2002 2007-2008?

. . Neural Fiber Bundles (Zebra Fish)
Endoplasmic Reticulum

(courtesy of Liz Jurrus & Chi-Bin Chien, University of Utah and
Winfried Denk, Max Planck Institute for Medical Research)

(courtesy of Bridget Wilson, et al.
University of New Mexico)
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Definitions

National

y @ Sandia
LOCKHEED MARTIN }]17 Jason Shepherd Laboratories




\

Definitions

Computational Modeling Sciences Department

A hexahedral mesh can be defined as a geometric cell complex
composed of 0-dimensional nodes, 1-dimensional edges, 2-
dimensional quadrilaterals (residing in ®3), and 3-dimensional
hexahedra, such that:

* Topologic Constraints:

Each node is contained by at least three edges

Each edge contains two distinct nodes.

If two edges contain the same nodes, the edges are identical.
Each quadrilateral is bounded by a cycle of four distinct edges.
Two quadrilaterals share at most one edge.

If two quadrilaterals share four edges, they are identical.

Each hexahedra is bounded by six distinct quadrilaterals.

Every quadrilateral is contained by at least one hexahedra and no
more than 2.

Two hexahedra share at most one quadrilateral.
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Definitions

Computational Modeling Sciences Department

 Boundary Constraints:

— Every quadrilateral on the boundary of the hexahedral mesh must
correspond to a surface on the geometric boundary.

— Every surface on the geometric boundary must have a collection
of simply connected quadrilaterals on the boundary of the
hexahedral mesh that approximates the surface.

— Every curve on the geometric boundary must have a collection of
simply connected edges on the boundary of the hexahedral mesh
that approximates the curve.

— Every vertex on the geometric boundary must be associated with a
node in the hexahedral mesh.

 Geometric or Quality Constraints:

— All quadrilaterals and hexahedra should be convex and have
positive volume.

* In Cubit, we typically require that min( |J]| ) > 0. (scaled) fori =1 to 8,
and strive for min( |J]| ) > 0.2 (scaled)
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Hexahedral Layers

Computational Modeling Sciences Department

* Due to symmetry within a hexahedral element, all hexahedral
meshes are created as layers of hexahedral elements.
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Hexahedral Layers

Computational Modeling Sciences Department

* Due to symmetry within a hexahedral element, all hexahedral
meshes are created as layers of hexahedral elements.

« Hexahedral layers can also be visualized as manifold surfaces
(also known as ‘sheets’)
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Hexahedral Columns

Computational Modeling Sciences Department

* The intersection of one or more sheets of
hexahedra form ‘columns’ of hexahedra (also
known as a chords).

 Sheets and chords are elements within the ‘dual’
description of a hexahedral mesh.
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Topologic Constraints in the
Dual of a Hexahedral Mesh

Computational Modeling Sciences Department

* The dual of the mesh M is the set of intersecting 2-manifolds
(sheets) M* such that:

— At any point there can be at most three intersecting 2-
manifolds.

— A set of 2-manifolds cannot meet at a tangency

— A single intersection of any 2-manifold (including self-
intersection) must result in a 1-manifold.

— The intersection of a 1-manifold and a 2-manifold result in
a triple-point intersection.

— Every 2-manifold must contain at least one triple-point
intersection.

— Every compact 2-manifold must contain more than one
triple point intersection.
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Boundary Constraints in the
Dual of a Hexahedral Mesh

Computational Modeling Sciences Department

— Every geometric surface in the
model must have at least one layer
(sheet) of hexes beneath it (but et
may have more than one). i\i \KX i~

— Every geometric curve in the A : &
model must have at least one
column (chord) of hexes adjacent
to it (but may have more than
one).

— Every geometric vertex in the
model must map to at least c
intersections of three sheets,
where c is equal to:

max(v-2,1)

where v is the vertex valence.
(Vertex valence is the number of
geometric curves connected to the
vertex. A vertex with 3 curves has
a valence of 3.)
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Geometric Constraints in the
Dual of a Hexahedral Mesh

Computational Modeling Sciences Department

* Minimize sheet curvature.
* Maximize sheet orthogonality.
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Methods
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Methods —
Sheet Insertion and Extraction
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Methods -
Sheet Insertion (Pillowing)

Computational Modeling Sciences Department

Given a hexahedral mesh (not necessarily octree) and a triangle
mesh on a manifold
1. Separate the hexahedra into three groups
1. Hexes intersected by the triangle mesh
2.  Hexes to one side of the triangle mesh (Sidel), and
3. Hexes on the opposite side of the triangle mesh (Side2).

2. Placing the intersected hexes with one of the two siaes, Insert
two sheets of hexahedra between the resulting groups
projecting the new nodes to the original triangle mesh.
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' Methods —

Hexahedral Flipping

Computational Modeling Sciences Department

 Two examples of hexahedral ‘flips’-
— Face collapse:

— Boundary Face collapse:
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' Methods —

Hexahedral Flipping

Computational Modeling Sciences Department

* Dual changes due to ‘flip’ operations-
— Face collapse:

|
| I
, /
— _|.___.|:>-—’ ——
. /
| [
j .'
— Boundary Face collapse:
1 = 11
| :
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Research Definitions

National

y @ Sandia
LOCKHEED MARTIN }]7 Jason Shepherd Laboratories




\

Waves on a String

Computational Modeling Sciences Department

In wave theory, a string with the two endpoints fixed at opposite
ends vibrates with several frequencies. The lowest frequency
wave that can be formed on the string has a wavelength that is
twice the length of the string, and is known as the first harmonic,

or the fundamental frequency, of the string.

e VN
\/W

First Harmonic, or 2nd Harmonic 4th Harmonic
‘Fundamental’ Frequency
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Fundamental Hexahedral Meshes

Computational Modeling Sciences Department

» Definition: A fundamental mesh is a hexahedral mesh that contains
one sheet for every surface, at least one continuous two-sheet
intersection (chord) for every curve, and (vertex valence - 2) triple-point
intersections (centroids) for every geometric vertex.

Fundamental Sheet Boundary Sheets

Fundamental Mesh Non-Fundamental Mesh
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'5; ' Converting to Fundamental

Hexahedral Meshes

Computational Modeling Sciences Department

« Assertion 1: For any given hexahedral mesh of a
geometric object, there exists a set of transformations
that converts the set of boundary sheets into a set of
fundamental sheets for the geometry.

A proof of existence for this transformation is
demonstrated fairly easily by inserting a single
sheet of elements interior to the boundary of the
geometric object, and then doing a similar
operation on each of the surfaces (if fundamental
curves don’t exist).
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' Converting to Fundamental

Hexahedral Meshes

Computational Modeling Sciences Department

 Hexahedral Flipping operations can also be used
to convert hexahedral meshes to fundamental
meshes.

— Example 1:
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Hexahedral Meshes

Computational Modeling Sciences Department

 Hexahedral Flipping operations can also be used
to convert hexahedral meshes to fundamental

meshes.
— Example 2:
7 - _J
| | - |
1 L
Non-fundamental Mesh Pillow nodes Face Collapse operations Fundamental Mesh
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The Set of
Fundamental Hexahedral Meshes

Computational Modeling Sciences Department

* A given geometric object may have several sets
of fundamental sheets which satisfy the definition
of a fundamental mesh.
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The Set of
Fundamental Hexahedral Meshes

Computational Modeling Sciences Department

» Assertion 2: There exists a set of operations that will convert one
mesh into another mesh.

» Specifically, we want a set of operations to convert one fundamental
mesh in G into an alternate fundamental mesh in G
« A working proof of this concept can be given as follows:

— Given two different, fundamental meshes for a given geometric
object, (the set of sheets from these two meshes will be
designated A & B), then using sheet insertion (+) and sheet
extraction (-) the following statement will be true:

A+B-A=B

| | ‘ ‘ ‘ ‘ | | ‘
A + B = C - A = B
National
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Another view of Assertion 2

Computational Modeling Sciences Department

Examples from Matt Staten, et al., Poster at the 161" Sandia
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The Set of
Fundamental Hexahedral Meshes

Computational Modeling Sciences Department

« An alternative view of Assertion 2: For any geometry, there exists a set of
sheets, chords and centroids necessary for the mesh to be fundamental
with the geometric object. How these pieces are connected determines
the various fundamental meshes possible in the geometric object.

B C D
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} Minimizing Hexahedral Meshes

Computational Modeling Sciences Department

 Definition: A secondary sheet is a sheet in a mesh
that is not a boundary sheet or a fundamental sheet
in that mesh. Secondary sheets are typically utilized

to meet shape/size requirements within the final
mesh.

Fundamental Sheets Secondary Sheets
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}‘ Minimizing Hexahedral Meshes

Computational Modeling Sciences Department

* The fundamental sheets are necessary for
maintaining the geometric fidelity of the
hexahedral mesh with the original solid geometry.
Removing the secondary sheets from the mesh
results in a mesh which is coarse, but maintains
the geometric fidelity to the original geometry.

— Example 1:

1000 hexes 8 hexes
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Minimizing Hexahedral Meshes

Computational Modeling Sciences Department

— Example 2:

10,534 hexes - Secondary sheets = 77 hexes
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Minimal Hexahedral Mesh

Computational Modeling Sciences Department

* Definition:
— A hexahedral mesh is minimal within a geometric object if:

1. it contains the fewest number of hexahedra for all sets of
possible hexahedral meshes for a given object
« 2. The mesh does not contain any doublets

« 3. The mesh does not contain any ‘geometric’' doublets

— (i.e. two adjacent faces on a hex cannot belong to a single surface,
and two adjacent edges of a hex cannot belong to a single curve.)

* Definition:
— A thin-region exists within a mesh when a single sheet is
fundamental to two opposing surfaces within the mesh (i.e.

there is only a single layer of hexahedra within this portion
of the geometry.)
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}' Minimal Hexahedral Meshes

Computational Modeling Sciences Department

« Conjecture 1: The minimal hexahedral mesh for a
geometric object without thin regions is defined by
one of the possible sets of fundamental sheets for a
geometric object.

/+ +'@-‘Q OR | OR_. l—

+ 5 sheets 5 sheets 4 sheets
+ +
[ L
5 elements® 8 elements 9 elements

National

y @ Sandia
LOCKHEED MARTIN % Jason Shepherd Laboratories




\

Minimal Hexahedral Meshes

Computational Modeling Sciences Department

« Conjecture 2: The minimal hexahedral mesh for a
geometric object with thin regions will be fundamental
with respect to at least one of side of the thin region
In the geometric object.

Boundary
Remove Face
sheet Collapse
® ® ® ® L
Fundamental Mesh Non-Fundamental Mesh Fundamental and Minimal Mesh
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Minimal Hexahedral Meshes

Computational Modeling Sciences Department

« Conjecture 2: The minimal hexahedral mesh for a
geometric object with thin regions will be fundamental
with respect to one of side of the thin region in the

geometric object

Minimal Mesh (3 elements)
Not fundamental with respect to

this side of the thin region

Original Geometry

Fundamental with respect Sandi
this side of the thin regi Nagoll?al
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Why is this important?

Computational Modeling Sciences Department

» Characterizing a mesh as fundamental is
testable.

* Amesh that is not a fundamental mesh can
be converted to fundamental using sheet
insertion (and/or other) algorithms.

« Showing that the minimal mesh is also
related to the fundamental mesh can be used
to reduce the complexity of an all-hex
algorithm (i.e., if | can prove that my algorithm
satisfies the fundamental mesh requirements,
| can also prove that it will generate a mesh in
G).

All Hexahedral Meshes in G

All Fundamental Meshes in G

Minimal Mesh in G
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Hexahedral Isosurfacing

Computational Modeling Sciences Department

* In 2005, Zhang et al. introduced an algorithm for generating hexahedral
topologies from volumetric data in a process similar to Marching Cubes
and dual contouring methods of generating triangle isosurfaces.

— Similar results to other hexahedral octree methods (i.e. poor and inverted
hexahedra found at the boundary of the resulting mesh).

— Zhang et al. worked to improve these meshes by smoothing the boundary
elements. However, many elements still retained poor or inverted shapes.
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Hexahedral Isosurfacing

Computational Modeling Sciences Department

» By introducing a fundamental sheet for the isosurface into the mesh, the
quality of these meshes can be dramatically improved without altering the
original quadrilateral boundary mesh.

— Example:
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Hexahedral Isosurfacing

Computational Modeling Sciences Department

« Additionally, because the original method does not alter the original octree
topology, it is possible to generate conformal meshes between interior
and exterior sets of elements.

— Example; Head Sphere Element Quality Distribution
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Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example:

MAChE Element Quality Distribution
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‘ Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example 1 (Hand)- 202,974 hexahedra
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‘ Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example 1 (Hand)- Geometric Fidelity to original Triangle Mesh

Composite facets (triangle facets

Original Triangle Mesh Hexahedral Facets in red, hexahedral facets in green)
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Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example 1 (Hand)-

Hand Element Quality Distribution
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Sheet Insertion

Computational Modeling Sciences Department
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é Hand Element Quality Distribution
350000 A 317986
I
Q @
e H e o e e e
300000 .g E ‘
I
E 250000 feereeBeeeeefereos T
= o 1
o g 3
O 200000 f=----f--- -
‘q&; I
R ey el o e o et o e i e e e e
£ 150000 :
@ I
b 100000 Heeemmmeemmeee T
] 45402
50000 - A ST 15890 ] = i
0 _!I T 1 !
lessthan  (0002) (0204) (0406) (0608) (08,10)
0.0
Scaled Jacobian

A F] Netonal
LOCKHEED MABTIN% Jason Shepherd ULaboratnries



‘ Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example 1 (Dragon)- 465,527 hexahedra
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‘ Hexahedral Isosurfacing

Computational Modeling Sciences Department

— Example 1 (Dragon)-

Dragon Element Quality Distribution
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-Mouse model is courtesy of Jeroen Stinstra of the SCI Institute at the University of Utah
-Bumpy Sphere model is provided courtesy of mpii by the AIM@SHAPE Shap it _dla

-Brain and Hand Models are provided courtesy of INRIA by thﬁé%kll\@e%lﬁlég’E e
oratories



Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Using the same algorithm developed for isosurfaces, we can
insert multiple sheets whenever it is desirable to capture a hard
curve in the hexahedral mesh. Coupling this algorithm with
geometric Boolean operations enables hexahedral mesh
generation of increasingly complex geometric solids.
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (skull)

Skull mesh: Cranial Mesh: Composite facets
Contains 19,330 hexahedra Contains 34,815 hexahedra (transparent view)
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department
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Multi-surface
Hexahedral Mesh Generation

+ Example (skull) -

Skull Element Quality Distribution
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Cranial cavity shown in magenta
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Computational Modeling Sciences Department

|clisp|

6.4958e-20
5.5678e-20
4.6308e-20
3.711%-20

2.783%e-20
- 1.8553e-20
-9.2797e-21
-0

Cnntnur F\H of ms;n Ejmapu
Derormation ( x6 ¥45898+16): displ of TIME ANALYSIS, step 18-6

Impact analysis courtesy of Dr. Marco Stupazzini,
Department fuer Geo- und
Umweltwissenschaften Sektion Geophysik Ludwig-
Maximilians-Universitaet Theresienstrasse 41
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (goose16) — contains 57,114 hexahedra

Front view

Back View
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (goose16) - process
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (goose16) — process (cont’d.)
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (goose16) — process (cont’d.)
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Multi-surface
Hexahedral Mesh Generation

Computational Modeling Sciences Department

« Example (goose16) -

Goose16 Element Quality Distribution
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-Models A, C, D, E are provided courtesy of ANSYS

-Moq4
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}

 Decomposition time for hexahedral mesh generation is
significant, but required for traditional approaches. New
approaches to hexahedral mesh generation can reduce this
overhead.

* Mesh transformation operations exist that will allow us to
convert one mesh to an alternate mesh without destroying
geometric integrity.

* The fundamental mesh is related to the minimal mesh in a
geometric object.

 The fundamental mesh gives a quantifiable set of structures
for determining geometric integrity of a mesh to a given
geometry.

 Introduction of fundamental sheets/chords can be used in
place of decomposition to build up new meshes which
conform to difficult geometries.
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