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Mesh Generation Needs

“Ironically, as numerical analysis is applied to larger and 
more complex problems, non-numerical issues play a larger 
role.  Mesh generation is an excellent example of this 
phenomenon.  Solving current problems in structural 
mechanics or fluid dynamics with finite difference of finite 
element methods depends on the construction of high-
quality meshes of surfaces and volumes.  Geometric design 
and construction of these meshes are typically much more 
time-consuming than the simulations that are performed 
with them.”

• John Guckenheimer, “Numerical Computation in the 
Information Age” in June 1998 issue of SIAM News.
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Setup Time: A Key Problem
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*Typical case for hexahedral meshes 
on Sandia National Laboratories geometries
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DTA Process Map
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Hexahedral Meshing

… create an alternate geometric representation 
consisting of hexahedral elements…

Given a geometric representation 
of an object, G,…

Model Creation
25% of DTA time*

Decomposition for Hex Meshing
32% of DTA time*

Hex Meshing
14% of DTA time*

However, decomposition for pave-sweep is more art than science…

*timings based on a Design-thru-Analysis study conducted by the DART project

Unfortunately, there is only a limited class of geometries for which hexahedral meshing 
(pave and sweep) can be automated with current tools/algorithms.  So…
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Models get more complex over time…

800K dof
MP Salinas

>10M dof
MP Salinas

40,000 dof
NASTRAN

200 dof
Shellshock 2D

ca. 1988 ca. 1995 ca. 2000ca. 1998

As model complexity increases, decomposition for 
pave-sweep quickly becomes intractable…



Computational Modeling Sciences Department

Jason Shepherd

Capacity and Resolution

ca. 2002 2007-2008?

Endoplasmic Reticulum 

(courtesy of Bridget Wilson, et al. 

University of New Mexico)

Neural Fiber Bundles (Zebra Fish)

(courtesy of Liz Jurrus & Chi-Bin Chien, University of Utah and

Winfried Denk, Max Planck Institute for Medical Research)
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Definitions

A hexahedral mesh can be defined as a geometric cell complex 
composed of 0-dimensional nodes, 1-dimensional edges, 2-
dimensional quadrilaterals (residing in ℜ3), and 3-dimensional 
hexahedra, such that:

• Topologic Constraints:
– Each node is contained by at least three edges

– Each edge contains two distinct nodes.

– If two edges contain the same nodes, the edges are identical.

– Each quadrilateral is bounded by a cycle of four distinct edges.

– Two quadrilaterals share at most one edge.

– If two quadrilaterals share four edges, they are identical.

– Each hexahedra is bounded by six distinct quadrilaterals.

– Every quadrilateral is contained by at least one hexahedra and no 
more than 2.

– Two hexahedra share at most one quadrilateral.

– …
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Definitions

• Boundary Constraints:

– Every quadrilateral on the boundary of the hexahedral mesh must 
correspond to a surface on the geometric boundary.

– Every surface on the geometric boundary must have a collection 
of simply connected quadrilaterals on the boundary of the 
hexahedral mesh that approximates the surface.

– Every curve on the geometric boundary must have a collection of 
simply connected edges on the boundary of the hexahedral mesh 
that approximates the curve.

– Every vertex on the geometric boundary must be associated with a 
node in the hexahedral mesh.

• Geometric or Quality Constraints:

– All quadrilaterals and hexahedra should be convex and have 
positive volume.

• In Cubit, we typically require that min( |Ji| ) > 0. (scaled) for i = 1 to 8, 
and strive for min( |Ji| ) > 0.2 (scaled)
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Hexahedral Layers

• Due to symmetry within a hexahedral element, all hexahedral 
meshes are created as layers of hexahedral elements.
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Hexahedral Layers

• Due to symmetry within a hexahedral element, all hexahedral 
meshes are created as layers of hexahedral elements.

• Hexahedral layers can also be visualized as manifold surfaces 
(also known as ‘sheets’)
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Hexahedral Columns

• The intersection of one or more sheets of 
hexahedra form ‘columns’ of hexahedra (also 
known as a chords).

• Sheets and chords are elements within the ‘dual’ 
description of a hexahedral mesh.
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Topologic Constraints in the 
Dual of a Hexahedral Mesh

• The dual of the mesh M is the set of intersecting 2-manifolds 
(sheets) M* such that:

– At any point there can be at most three intersecting 2-
manifolds.

– A set of 2-manifolds cannot meet at a tangency

– A single intersection of any 2-manifold (including self-
intersection) must result in a 1-manifold. 

– The intersection of a 1-manifold and a 2-manifold result in 
a triple-point intersection.

– Every 2-manifold must contain at least one triple-point 
intersection.

– Every compact 2-manifold must contain more than one 
triple point intersection.

– …
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Boundary Constraints in the 
Dual of  a Hexahedral Mesh

– Every geometric surface in the 
model must have at least one layer 
(sheet) of hexes beneath it (but 
may have more than one). 

– Every geometric curve in the 
model must have at least one 
column (chord) of hexes adjacent 
to it (but may have more than 
one). 

– Every geometric vertex in the 
model must map to at least c 
intersections of three sheets, 
where c is equal to:

max(v − 2, 1)
where v is the vertex valence. 
(Vertex valence is the number of 
geometric curves connected to the 
vertex. A vertex with 3 curves has 
a valence of 3.)



Computational Modeling Sciences Department

Jason Shepherd

Geometric Constraints in the 
Dual of  a Hexahedral Mesh

• Minimize sheet curvature.

• Maximize sheet orthogonality.
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Methods
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Methods –
Sheet Insertion and Extraction

+ = = +
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Methods –
Sheet Insertion (Pillowing)

Given a hexahedral mesh (not necessarily octree) and a triangle 
mesh on a manifold

1. Separate the hexahedra into three groups
1. Hexes intersected by the triangle mesh

2. Hexes to one side of the triangle mesh (Side1), and

3. Hexes on the opposite side of the triangle mesh (Side2).

2. Placing the intersected hexes with one of the two sides, insert 
two sheets of hexahedra between the resulting groups 
projecting the new nodes to the original triangle mesh.
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Methods –
Hexahedral Flipping

• Two examples of hexahedral ‘flips’-

– Face collapse:

– Boundary Face collapse:



Computational Modeling Sciences Department

Jason Shepherd

• Dual changes due to ‘flip’ operations-

– Face collapse:

– Boundary Face collapse:

Methods –
Hexahedral Flipping
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Research Definitions
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First Harmonic, or
‘Fundamental’ Frequency

2nd Harmonic 4th Harmonic

Waves on a String

In wave theory, a string with the two endpoints fixed at opposite 
ends vibrates with several frequencies. The lowest frequency 
wave that can be formed on the string has a wavelength that is 
twice the length of the string, and is known as the first harmonic, 
or the fundamental frequency, of the string.



Computational Modeling Sciences Department

Jason Shepherd

Fundamental Hexahedral Meshes

• Definition: A fundamental mesh is a hexahedral mesh that contains 
one sheet for every surface, at least one continuous two-sheet 
intersection (chord) for every curve, and (vertex valence - 2) triple-point 
intersections (centroids) for every geometric vertex.

Boundary SheetsFundamental Sheet

Fundamental Mesh Non-Fundamental Mesh
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Converting to Fundamental 
Hexahedral Meshes

• Assertion 1:  For any given hexahedral mesh of a 
geometric object, there exists a set of transformations 
that converts the set of boundary sheets into a set of 
fundamental sheets for the geometry.

• A proof of existence for this transformation is 
demonstrated fairly easily by inserting a single 
sheet of elements interior to the boundary of the 
geometric object, and then doing a similar 
operation on each of the surfaces (if fundamental 
curves don’t exist).
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Converting to Fundamental 
Hexahedral Meshes

• Hexahedral Flipping operations can also be used 
to convert hexahedral meshes to fundamental 
meshes.

– Example 1:
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Converting to Fundamental 
Hexahedral Meshes

• Hexahedral Flipping operations can also be used 
to convert hexahedral meshes to fundamental 
meshes.

– Example 2:

Non-fundamental Mesh Fundamental MeshPillow nodes Face Collapse operations
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The Set of 
Fundamental Hexahedral Meshes

• A given geometric object may have several sets 
of fundamental sheets which satisfy the definition 
of a fundamental mesh.
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The Set of 
Fundamental Hexahedral Meshes

• Assertion 2: There exists a set of operations that will convert one 
mesh into another mesh.

• Specifically, we want a set of operations to convert one fundamental 
mesh in G into an alternate fundamental mesh in G

• A working proof of this concept can be given as follows:

– Given two different, fundamental meshes for a given geometric 
object, (the set of sheets from these two meshes will be 
designated A & B), then using sheet insertion (+) and sheet 
extraction (-) the following statement will be true:

A + B – A = B 

A + B = C A = B-
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Another view of Assertion 2

Examples from Matt Staten, et al., Poster at the 16th

International Meshing Roundtable, Seattle, WA.
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A

DCB

OR OR

The Set of 
Fundamental Hexahedral Meshes

• An alternative view of Assertion 2:  For any geometry, there exists a set of 
sheets, chords and centroids necessary for the mesh to be fundamental 
with the geometric object.  How these pieces are connected determines 
the various fundamental meshes possible in the geometric object.
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Minimizing Hexahedral Meshes

• Definition: A secondary sheet is a sheet in a mesh 
that is not a boundary sheet or a fundamental sheet 
in that mesh. Secondary sheets are typically utilized 
to meet shape/size requirements within the final 
mesh.

Fundamental Sheets Secondary Sheets
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Minimizing Hexahedral Meshes

• The fundamental sheets are necessary for 
maintaining the geometric fidelity of the 
hexahedral mesh with the original solid geometry.  
Removing the secondary sheets from the mesh 
results in a mesh which is coarse, but maintains 
the geometric fidelity to the original geometry.

– Example 1:

_
=

1000 hexes 8 hexes
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Minimizing Hexahedral Meshes

– Example 2:

10,534 hexes 77 hexes- Secondary sheets    = 
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Minimal Hexahedral Mesh

• Definition:

– A hexahedral mesh is minimal within a geometric object if: 

• 1. it contains the fewest number of hexahedra for all sets of 
possible hexahedral meshes for a given object

• 2. The mesh does not contain any doublets

• 3. The mesh does not contain any 'geometric' doublets 

– (i.e. two adjacent faces on a hex cannot belong to a single surface, 
and two adjacent edges of a hex cannot belong to a single curve.)

• Definition:

– A thin-region exists within a mesh when a single sheet is 
fundamental to two opposing surfaces within the mesh (i.e. 
there is only a single layer of hexahedra within this portion 
of the geometry.)
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OR OR

Minimal Hexahedral Meshes

• Conjecture 1: The minimal hexahedral mesh for a 
geometric object without thin regions is defined by 
one of the possible sets of fundamental sheets for a 
geometric object.

5 sheets 4 sheets5 sheets

5 elements* 9 elements8 elements
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Minimal Hexahedral Meshes

• Conjecture 2: The minimal hexahedral mesh for a 
geometric object with thin regions will be fundamental 
with respect to at least one of side of the thin region 
in the geometric object.

Remove
sheet

Boundary
Face

Collapse

Fundamental Mesh Fundamental and Minimal MeshNon-Fundamental Mesh
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Minimal Hexahedral Meshes

• Conjecture 2: The minimal hexahedral mesh for a 
geometric object with thin regions will be fundamental 
with respect to one of side of the thin region in the 
geometric object.

Minimal Mesh (3 elements)

Original Geometry

Fundamental with respect to 
this side of the thin region

Not fundamental with respect to 
this side of the thin region
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Why is this important?

All Hexahedral Meshes in G

All Fundamental Meshes in G

Minimal Mesh in G

• Characterizing a mesh as fundamental is 
testable.
• A mesh that is not a fundamental mesh can 
be converted to fundamental using sheet 
insertion (and/or other) algorithms.
• Showing that the minimal mesh is also 
related to the fundamental mesh can be used 
to reduce the complexity of an all-hex 
algorithm (i.e., if I can prove that my algorithm 
satisfies the fundamental mesh  requirements, 
I can also prove that it will generate a mesh in 
G).
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Hexahedral Isosurfacing

• In 2005, Zhang et al. introduced an algorithm for generating hexahedral 
topologies from volumetric data in a process similar to Marching Cubes 
and dual contouring methods of generating triangle isosurfaces.  

– Similar results to other hexahedral octree methods (i.e. poor and inverted 
hexahedra found at the boundary of the resulting mesh).

– Zhang et al. worked to improve these meshes by smoothing the boundary 
elements.  However, many elements still retained poor or inverted shapes.
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Hexahedral Isosurfacing

• By introducing a fundamental sheet for the isosurface into the mesh, the 
quality of these meshes can be dramatically improved without altering the 
original quadrilateral boundary mesh.

– Example:

Before After
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Hexahedral Isosurfacing

• Additionally, because the original method does not alter the original octree 
topology, it is possible to generate conformal meshes between interior 
and exterior sets of elements.

– Example:

Before

After
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Hexahedral Isosurfacing

– Example:

mAChE biomolecule
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Hexahedral Isosurfacing 

– Example 1 (Hand)- 202,974 hexahedra
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Hexahedral Isosurfacing 

– Example 1 (Hand)- Geometric Fidelity to original Triangle Mesh

Original Triangle Mesh Hexahedral Facets
Composite facets (triangle facets

in red, hexahedral facets in green)
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Hexahedral Isosurfacing 

– Example 1 (Hand)-



Computational Modeling Sciences Department

Jason Shepherd

Sheet Insertion
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Hexahedral Isosurfacing 

– Example 1 (Dragon)- 465,527 hexahedra
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Hexahedral Isosurfacing 

– Example 1 (Dragon)-
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-Mouse model is courtesy of Jeroen Stinstra of the SCI Institute at the University of Utah
-Bumpy Sphere model is provided courtesy of mpii by the AIM@SHAPE Shape Repository
-Brain and Hand Models are provided courtesy of INRIA by the AIM@SHAPE Shape Repository
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Multi-surface 
Hexahedral Mesh Generation

• Using the same algorithm developed for isosurfaces, we can 
insert multiple sheets whenever it is desirable to capture a hard 
curve in the hexahedral mesh.  Coupling this algorithm with 
geometric Boolean operations enables hexahedral mesh 
generation of increasingly complex geometric solids.
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Multi-surface 
Hexahedral Mesh Generation

• Example (skull)

Skull mesh:
Contains 19,330 hexahedra

Cranial Mesh:
Contains 34,815 hexahedra

Composite facets 
(transparent view)
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A B C D E

Multi-surface
Hexahedral Mesh Generation
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Multi-surface 
Hexahedral Mesh Generation

• Example (skull) -

Skull bone shown in blue
Cranial cavity shown in magenta

Impact analysis courtesy of Dr. Marco Stupazzini,
Department fuer Geo- und 

Umweltwissenschaften Sektion Geophysik Ludwig-
Maximilians-Universitaet Theresienstrasse 41
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Multi-surface 
Hexahedral Mesh Generation

• Example (goose16) – contains 57,114 hexahedra

Front view

Back View
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Multi-surface
Hexahedral Mesh Generation

• Example (goose16) - process
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Multi-surface
Hexahedral Mesh Generation

• Example (goose16) – process (cont’d.)
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Multi-surface
Hexahedral Mesh Generation

• Example (goose16) – process (cont’d.)
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Multi-surface 
Hexahedral Mesh Generation

• Example (goose16) -



Computational Modeling Sciences Department

Jason Shepherd

-Models A, C, D, E are provided courtesy of ANSYS
-Model B is provided courtesy of Tim Tautges by the AIM@SHAPE Shape Repository
-Model F is provided courtesy of Inria by the AIM@SHAPE Shape Repository

A

D B

C

E

B

F



Computational Modeling Sciences Department

Jason Shepherd

R-Adaptive Refinement

• R-Adaptive Refinement
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R-Adaptive Refinement
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Conclusion

• Decomposition time for hexahedral mesh generation is 
significant, but required for traditional approaches.  New 
approaches to hexahedral mesh generation can reduce this 
overhead.

• Mesh transformation operations exist that will allow us to 
convert one mesh to an alternate mesh without destroying 
geometric integrity.

• The fundamental mesh is related to the minimal mesh in a 
geometric object.  

• The fundamental mesh gives a quantifiable set of structures 
for determining geometric integrity of a mesh to a given 
geometry.  

• Introduction of fundamental sheets/chords can be used in 
place of decomposition to build up new meshes which 
conform to difficult geometries.
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