SAND2008- 2155C

Initial Experiences with the BEC Parallel Programming Environment

Mike Heroux, Zhaofang Wen
Sandia National Labs
Albuquerque, NM 87185
{maherou, zwen }@sandia.gov

Abstract

Bundle-Exchange-Compute (BEC) is a new wvir-
tual shared memory parallel programming environment
for distributed-memory machines. Different from and
complementary to other Global Address Space (GAS)
programming model research efforts, BEC has built-in
efficient support for unstructured applications that in-
herently require high-volume random fine-grained com-
munication, such as parallel graph algorithms, sparse-
matrices, and large-scale physics simulations.

In BEC, the global view of shared data structures en-
ables ease of algorithm design and programming; and
for good application performance, fine-grained (ran-
dom) accesses to shared data are automatically and dy-
namically bundled together for coarse-grained message-
passing. BEC frees the users from explicit manage-
ment of data distribution, locality, and communica-
tion. Therefore, BEC is much easier to program than
MPI, while achieving comparable application perfor-
mance. This paper presents some initial BEC applica-
tions, which show that simple BEC programs can match
very complex and highly optimized MPI codes.

1 Introduction

A parallel programming model provides an abstrac-
tion for programmers to express the parallelism in their
applications while simultaneously exploiting the capa-
bilities of the underlying hardware architecture. A
programming model is typically implemented in a pro-
gramming language, or a runtime library, or both; and
the implementation is also referred to as a program-
ming environment.

For decades researchers and language developers
have been exploring and proposing parallel library and
language (PLL, often integrated together in a program-
ming environment.) extensions to support large-scale
parallel computing. In the entire time, MPI has been

Junfeng Wu, Yuesheng Xu
Syracuse University
Syracuse, NY 13244-1150
{juwu, yxu06}@syr.edu

the only project that can be called a broad success.
PVM [1] and SHMEM [12] have made an impact on
a subset of platforms and applications. Shared mem-
ory parallel models such as POSIX Threads [2] and
OpenMP [3] are also extremely useful, but large-scale
parallelism using threads is limited by a number of fac-
tors such as a lack of computers with large processor
counts, problems with latency and data locality of logi-
cally shared data that is physically distributed and sub-
tle issues such as false cache line sharing that can make
a parallel slower than its sequential counterpart. Iron-
ically, the success of Message Passing Interface (MPI
[13]) has made the adoption of true language extensions
and other novel library approaches extremely difficult
across existing parallel applications bases and with ex-
isting parallel application development teams because
there is a high degree of satisfaction with the perfor-
mance and availability of MPI and a critical mass of
MPI expertise. In other words, many people think
MPI is all they need. Many good ideas have failed
because they have not recognized and address this at-
titude. There are still many opportunities to improve
upon MPI, both in usability and performance.

A practical programming model must balance often-
conflicting technical factors such as application perfor-
mance, expressiveness and ease of use (for program-
mer productivity), scalability to increasing number of
processors, and portability to a wide range of architec-
tures. Furthermore, there are nontechnical barriers to
acceptance of new programming models, and probably
the most important one is the migration of heavily-
invested and actively-used legacy (MPI) applications
and their expert programmers, along with the costs
of development and adoption of new models to a new
programming model.

Despite MPTI’s success, there are still many classes
of application for which MPI is not suited. It is also
questionable whether MPI will be suitable for future
architectures.

1.1 State of the Art

The DARPA HPCS program is in its Phase III
(2006-2010) with a focus on programming models [9].
GAS is regarded as a key step towards the HPCS goals.
Major parallel machine vendors have dedicated teams
developing their own future models (e.g. IBM’s X10
[11] and Cray’s Chapel [14]), all to offer GAS as a sub-
set. GAS models can be realized in libraries and lan-
guage extensions. Examples of GAS libraries are MPI-
2 [15], and Cray’s SHMEM [12]. Existing GAS lan-
guage extensions include Unified Parallel C (UPC) [4],
Co-Array Fortran (CAF) [5], and the Java-based Tita-
nium [7]. UPC is currently available on many large ma-
chines. However, there are still significant challenges on
the path to true adoption of GAS models by the paral-
lel programming community. These challenges include
the current GAS models’ lack of built-in support for
a unstructured applications, and the lack of efforts to
help smooth transition of MPI legacy applications and
their programmers.

1.2 Overview of the BEC Model and Pro-
gramming Environment

BEC is a parallel programming model and envi-
ronment. BEC can be used alone; it can be used
as an enhancement to an existing environment such
as MPI; and it can also function as an intermediate
language [8] to other GAS languages such as PRAM C
[6] and UPC [4]. Furthermore, it can serve as a bridge
between programming models such as virtual shared
memory and message passing.

As a parallel programming model, BEC supports
virtual shared memory (a.k.a. Global Address Space,
or GAS) programming. The global data view of virtual
shared memory allows for ease of parallel algorithm
design and expression of parallelism, especially random
fine-grained parallelism. For efficient implementation,
BEC automatically and dynamically bundles up
fine-grained messages of any data types and arbitrary
sizes for coarse-grained communications. It provides
programmers with a simple mechanism to minimize
the overhead of fine-grained communication without
having to manage the data distribution, locality, or
communication. The strength of BEC is most apparent
for applications that inherently require high-volume
random fine-grained communication, such as parallel
graph algorithms, sparse-matrix operations, and large
scale simulations.

As a parallel programming environment, BEC pro-

vides users with an easy-to-use programming language
extension (to ANSI C) and a light-weight runtime
library. The BEC programming language extends
ANSI C (ISO C 99) to support parallel programming.
The BEC runtime library consists of a small set of
functions to let users program in BEC style. This
runtime library can be used alone or together with
the BEC programming language extension. The BEC
language extension is convenient because it allows
shared arrays to be used in regular array syntax,
which also allows the BEC library functions to be
used more conveniently. Advanced users who prefer to
use the runtime library directly may be able to write
more efficient codes. In either case, the Application
Programming Interface (API) of the BEC runtime
library is fairly simple. A user only needs to know a
few functions. A BEC program typically includes one

or more Bundle-Exchange-Compute phases as follows.
1

1. Bundle: Accesses to shared data (variables) must
be explicitly requested before they can be used in
local computation. These requests are automat-
ically and dynamically aggregated into a bundle
object by the BEC runtime library. Write requests
to shared variables can either be made explicitly
by calling BEC runtime library functions, or im-
plicitly in the BEC language extension in which
case assignment statements to shared variables are
translated into BEC runtime library calls for write
requests. The BEC runtime library offers func-
tions for both of these purposes. It also provides
functions to create a bundle object for multiple
bundle-exchange-compute phases.

2. Exchange: A call to the function
BEC_exchange() tells the BEC runtime library to
make sure that the bundles are exchanged among
the physical processors to fulfill the read and
write requests of shared data. This is a collective
operation. Depending on implementation of
the BEC runtime library, the actual exchange
(transfer) of data may occur before calling the
BEC_exchange() function. However, it is only
after this call that it is safe to assume that the
requested data are available for computation.

3. Compute: After the exchange, shared data can
be used as if they were local. Actual requests to

1With advanced compiler support, it is possible to generate
the read requests automatically. A user needs to insert some
“BEC_exchange()” calls in the “right place” in between the com-
putation code.

write shared variables are made (explicitly or im-
plicitly) in this step. These requests will be bun-
dled up with the read requests in the next phase
of Bundle-Exchange-Compute.

For example, consider the following code segment.

shared int A[10000], B[10000], C[10000];

BEC_request (A[3]); BEC_request(B[8]);
/+ exzplicitly request A[3], B[8] x/
BEC_exchange (0);
/¥ The ‘‘0” means normal exchange */
/* mode will be used. * /
C[10] = A[3]+B[8];
/xUse A[8], B[8] in computation andx/
/xrequest to write C[10] implicitlyx/

NOTE:

e The BEC exchange step is a collective call. It re-
solves all the pending (write and read) requests to
shared memory locations.

e If multiple write requests are made to the same
shared location, predetermined rules of the BEC
runtime library decide which one to succeed.

e When a processor reads a shared location, if there
is a write request by the same processor after the
preceding exchange call, the read operation will
get the value of that write request; otherwise, it
will get the value of the shared location at the end
of the preceding exchange call.

1.3 Language Extension and BEC Run-
time Library

BEC supports parallel programming in virtual
shared memory. The BEC programming environment
includes a minor language extension (to ANSI C). For
the language extension, the keyword “shared” is added
for declaration of globally (logically) shared variables.
On a distributed memory machine, a shared variable is
physically distributed over multiple processors. With
the BEC language extension, shared arrays can be op-
erated on using standard array syntax, such as array
indexing (e.g. A[5] for shared array for A).

The BEC programming environment also includes
a runtime library, BEC lib. This library can be used
with or without the BEC language extension. Even
without the BEC language extension, it is still possible
to declare and used shared variables, except that array
syntax is not allowed for shared arrays and that shared
arrays will be manipulated using the BEC lib functions.
BEC Lib has a very simple API with about 15 functions
altogether. For details, please refer to [16].

The BEC programming environment has a BEC to
C translator that converts a BEC program into a pro-
gram written in C and BEC lib function calls.

1.4 Execution Model and Flow of Control

A BEC program follows the SPMD (Single-
Program-Multiple-Data) model: programs are exe-
cuted asynchronously except at BEC_exchange func-
tions. Also, one copy of BEC lib runs on each and every
physical processor. The virtual shared memory of BEC
is managed by BEC lib, which bundles read and write
requests according to physical processor destinations.
BEC 1ib calls upon the message-passing layer (e.g. MPI
or Portals) to perform actual transport of data request
bundles. When the shared data requests are satisfied,
in the case of read requests, the requested data are
sent back to the requesting processors. BEC lib main-
tains hash tables to store remotely fetched shared data,
which can be retrieved efficiently for use in local com-
putation.

2 Applications and Performance

We have implemented several initial applications us-
ing BEC. Three of these applications are presented here
for demonstration. These three applications are

e a simple random access benchmark that is some-
what similar to the HPC Challenge Global Ran-
dom Access benchmark,

e a sparse linear system solver using the Conjugate
Gradient (CG) method, and

e a graph coloring algorithm based on the Largest
Degree First (LDF) heuristic.

The first application is a test, and it is chosen to show
the impact of bundling to application performance vs.
no bundling. Implemented in both BEC and MPI for
comparison, the other two applications show that BEC
is significantly easier to use than MPI while achiev-
ing comparable application performance; and this is
because BEC has built-in bundling capabilities while
the MPI programs need to include additional code for
bundling in ad hoc fashions.

Experiences from implementing these three can be
summarized as the following:

1. BEC can support unstructured applications very
efficiently (as intended).

2. With a few lines of BEC code automatically invok-
ing its built-in bundling, it can achieve very good

application performance that would require very
complex MPT codes to match (to our surprise).

3. BEC’s GAS allows easy algorithm design and ex-
pression of parallelism beyond MPI; and its built-
in dynamic bundling concept provides capabilities
for efficient implementation (a capability not yet
available in existing GAS languages). This combi-
nation can overcome programming difficulties that
prevent many applications from becoming MPI
parallel applications, because it frees application
programmers from system level details unrelated
to their own domain expertise.

Finally,the built-in efficient support for random fine-
grained shared data accesses raises the level of GAS
programming abstraction, and advances the state of
the art. BEC can help smooth migration from MPI to
GAS programming models.

2.1 Parallel Machine Used

All performance charts are made according to the
test results collected from the NERSC supercom-
puter Franklin (franklin.nersc.gov). Franklin is a Cray
XT4 system with 9,660 compute nodes. There is
one AMD Opteron 2.6 GHZ dual-core on each node,
so there are 19,320 compute processor cores in to-
tal. More detail about Franklin can be found at
http://www.nersc.gov /nusers/resources/franklin/.

2.2 Global Random Access

The test here is to show the importance of message
bundling to application performance when compared to
no-bundling. This test is similar to the HPCS GUPS
benchmark [10]; but there are some differences, which
will be discussed later in this section.

Specifically, the problem involves a shared array
X/NJ, distributed equally over these P processors, with
each processor holding a contiguous section of N/P
items. For the test, each processor to update the shared
array for M rounds. In each round, every processor ran-
domly selects N /P items of the shared array to update.
Algorithm:

for (round = 0; round < M; round ++4) {
for (i =0; i <N/ P; i ++) {
index = random () % N;
value = random ();
X[index] = value;
}
}

The first chart in Figure 1 shows the rates of random
accesses by various models, in terms of Giga Bytes Per

Random Access Rate

35

T 3 —#—shmem
g 25
g = i ——bec
& ? —&—mpi_256
»
% 15 ——mpi_512
@ =
5 1 f ——mpi_1024
@ 0s JRg— —8—mpi_2048
0 -l)
mpi_4096
1 2 4 8 16 32 64 128 256 512
mpi_8192
Number of Processors
Random Access Speedup
250
S 200 A ——shmem
P / —i—bec
€ 150 2
5 /f‘ —=—mpi_256
d 100 —#+—mpi_512
u o / _ —e—mpi_1024
p A -

+—mpi_2048

0 e -

1 2 4 B 16 32 64 128 256 512

mpi_4096

mpi_B8192
number of processors

Figure 1. Performance of Random Access

Second, on various numbers of processors. The sec-
ond chart in Figure 1 shows the scaling of these rates
relative to the number of processors. In these charts,
for example, the curve labeled “mpi_256” represents
the performance of the MPI implementation that al-
lows bundling up to 256 items. This number is also
called lookahead size in the HPCC Global-Random-
Access benchmark.

As shown in Figure 1, the BEC program scales bet-
ter than the other two programs. The scaling of the
MPI program depends on the lookahead size. Increas-
ing the lookahead size improves the granularity of the
communication of the MPI program, thus improves its
performance and scaling. This further demonstrates
the importance of bundling. With MPI, such bundling
requires substantial extra coding efforts in the users’
part; while with BEC, bundling is implicit and auto-
matic with no extra coding effort.

The HPCC Random Access benchmarks are mea-
sured in term of Giga Updates Per Second (GUPS).
These benchmarks are used for the ranking of super-
computers for the their abilities to support applications
that require random or irregular data accesses.

Although the GUPS benchmark has been used
mainly to test the hardware platform, a real applica-
tion is developed on a machine platform comprising
hardware and system software (including programming

environment); so it would be meaningful (even more
so for both practical reason and for the reaching the
DARPA goal) to test the GUPS on the programming
environment on which the real application is developed.
In this context, we choose to relax the restriction of
the size of the look-ahead for two reasons: (i) in real
application development, the message-queues used by
programmers are much less restrictive; and (ii) more
importantly, BEC has built-in message-bundling capa-
bilities that are automated and basically requires no
effort on the programmers’ part to handle random ac-
cesses, regardless of the sizes of the message-bundles.

2.3 Graph Coloring Algorithm Based on
the Largest Degree First Heuristic

Graph algorithms have many applications in high
performance parallel computing, especially in opti-
mizations , simulations, and even the parallelization
of traditional numerical methods such as Gauss-Seidel
iterative method. For example, graph coloring is used
in the parallel Gauss-Seidel method.

For our applications here, we choose the vertex col-
oring, which is to assign colors to vertices in a graph
such that no two adjacent vertices share the same color.
The specific algorithm is based on a heuristic called
Largest Degree First (LDF) as described below.
Input:

G — the graph with n vertices v_1, v_2, ..., v.n
Output:

c(v-l), ¢(v-2), ...c(van) — the assigned colors
Algorithm:

Randomly assign weight to every vertex on
this processor;
while (there are uncolored vertices in G) {
for each uncolored vertex on this
processor {
mark the vertex as a candidate;

for each uncolored neighbor of this
vertex {
if (the degree of neighbor > the
degree of this vertex) {
unmark the vertex;
break;
}
if (the degree of neighbor = the
degree of this vertex && the
weight of neighbor > the weight
of this vertex) {
unmark the vertex;
break;

}

if (the vertex is still marked) {
iterate through its wuncolored
neighbors to find out the smallest
possible color;
assign this smallest possible color
to the vertex;

}
}
for each picked vertex v_i {
c¢(v_i) = smallest possible color;
}

Note that accessing the neighbors (traversing the
edges) for each uncolored vertex typically cause ir-
regular (and potentially remote) data accesses. With
bundling, these data accesses will cause high-volume
random fine-grained communication. As shown in the
random access test discussed earlier, this kind of com-
munication can significantly hurt application perfor-
mance on distributed memory machine platforms.

Graph Coloring Time
. SO0
o
2 100 A
E 20 m\ —#— bec small
H T \ —i— mpi small
s %\ :
1 = —#— bec medium
8 a0 %\ -
3 —#—mpi medium
& 20 2
E. —#—bec large
@ s i i R —&— mpi large
1 2 4 8 16 32 64 128 256
number of processors
Graph Coloring Speedup
100
50 f}‘*
80
70 —i—bec small
g &0 /‘f? = :
T 5o 2 —— mpi small
g 40 “(‘ - —s—bec medium
30
20 ;' —#— mpi medium
_
10 — = = —@—bec large
0 | el)
= mpi large
2 4 8 16 32 64 128 256
number of processors

Figure 2. Performance of Graph Coloring

The first chart in Figure 2 shows the parallel exe-
cution time of both BEC and MPI implementations of
the graph coloring algorithm. The second chart in Fig-
ure 2 shows the performance scaling of the BEC and
MPI implementations relative to the number of paral-
lel processors. The three different curves for BEC as
well as those for MPI represent the performance of the

programs on data sets of three different sizes (small,
medium, and large). The small data set contains 5
million vertices and about 80 million edges, the median
one contains 10 million vertices and about 16 million
edges, while the large one contains 20 million vertices
and about 32 million edges.

As shown in Figure 2, the performance of the BEC
and the MPI implementation are comparable. The
BEC implementation started out a little bit slower on
low processor count. This is because the BEC bundling
(e.g. “BEC_request(...)”) operations involve function
calls to the BEC lib and associated function call over-
heads, while in the MPI implementation the manual
bundling operations do not involve such function calls
and overhead. The performance of the BEC imple-
mentation catches up relative to the MPI implemen-
tation, because the BEC runtime library has sophis-
ticated built-in data structures (such as hash tables)
that are highly optimized (especially as the processor
count increases), while the MPI implementation uses
general purpose hash tables from the C++ Standard
Template Library (STL). In Figure 2, BEC seems to
scale better as the number of processors increases; this
is because the BEC implementation started out slower.
The BEC and MPI implementations have similar per-
formance scaling trend for the same input data set.
When the scaling trend turns, the BEC curves trend
down more dramatically than the MPI curves; and this
is because the MPI message is optimized for the spe-
cific application, while the BEC message as prepared by
the BEC lib is general. For high processor count, the
BEC speedup numbers look better because the BEC
implementation started out slower than the MPI im-
plementation for a single processor.

task BEC lines | MPI lines
communication 10 69
(bundling included)

computation 58 61
whole program 131 201

Table 1. Code Sizes of the Graph Coloring
Programs

Table 1 shows the comparison of the BEC and MPI
implementations in terms of code sizes in various parts
of the graph coloring kernel. The ratio of code size for
bundling and exchange to the code size for computation
is about 0.17 for BEC, and more than 1 for MPI. The
reasons for the simpler BEC code are as follows.

e The BEC user only needs to write a few lines of
code to request the shared data regardless of their

physical locations. Its built-in bundling and asso-
ciated hashing are invoked automatically and im-
plicitly. The requested data becomes available af-
ter a single call to the BEC_exchange() function.

e The MPI user, in contrast, has to write code for
creating message queues, ad hoc data packing and
unpacking, and hashing data for their repeated use
in computation.

It is worth pointing out that the MPI implementa-
tion uses the C++4 Standard Template Library
(STL) for its hashing capabilities. Without calling a
third party library, the MPI user will have to write
additional code to implement the hash tables, which
not only is non-trivial to do for most users, but also
can significantly increase the already larger code size
of the MPI implementation.

2.4 Sparse Linear System Solver Using
the Conjugate Gradient Method

This application is a linear system solver using
the Conjugate Gradient (CG) method on an arbitrary
number of processors. The linear system solved in this
program is from the diffusion problem on 3D chimney
domain by a 27 point implicit finite difference scheme
with unstructured data formats and communication
patterns. The sparse-matrix vector multiplication in
this CG method is described below.

Input:

x — the shared array for the input vector

A — the sparse matrix
Output:

y — the shared array for the output vector
Algorithm:

for each y[i] on this processor {
y[i] = 0;
for each nonzero A[i][j] {
yli] +=A[i][J] * x[j];

An MPI program is used for the comparison to the
BEC CG program. This MPI program was written by
Mike Heroux, and used as a micro application for re-
search in many areas for several years at Sandia. Both
the BEC and the MPI codes are highly tuned, and both
solve the problem in two parts:

1. Bundle preparations (setting up message queues,
packing and unpacking data, localizing matrix,
etc), and

2. CG iterations (until convergence).

The performance comparison is shown in Figure 3.
‘We use notation “BEC_64_64_512” to represent the per-
formance of BEC on a 3D chimney domain (64h, 64h,
512h), where “h” is lattice size in space (similarly for
MPI). For this case, The sparse matrix involved in the
algorithm is (64*64*512) rows by (64*64*512) columns.
Similar notation is also applied to the MPI program.

As shown in Figure 3, the BEC and MPI have com-
patible performance. The better speedup of BEC than
MPI is partly due to the fact that BEC started out
slower than MPI. Theoretically, we do not expect the
BEC version to run faster than the MPI version; but
we see the BEC version to be slightly faster in some
cases, for the following possible reasons:

e The MPI code uses a hashing capability from the
C++ STL, which may be suboptimal for this spe-
cific need. In contrast, the built-in hash table
in BEC lib is well optimized. However, if the
MPI version is to write a customized op-
timal hash table, it can further add to its
code complexity.

e In the CG iteration (computation) part, the MPI
code uses blocking MPI “send/receive”; while the
BEC runtime library internally uses non-blocking
“send /receive” followed by “wait”.

These performance comparison results are similar to
those of the graph coloring application, except that
the CG programs are affected less by the communi-
cation overheads here. It is possibly because of the
better communication pattern of CG application than
the graph coloring application.

The code-size comparison is shown in Table 2.
Empty lines, comment lines, debugging code lines and
lines are not counted. The reason for why the BEC
program is simpler than the MPI program in this CG
application is similar to that in the graph coloring ap-
plication.

task BEC lines | MPI lines
bundle preparation 6 240
CG iterations 60 87
communication 11 277
whole program 233 733

Table 2. Code Sizes of the CG Programs

3 Conclusion

We have presented the BEC programming environ-
ment. Some applications have been implemented in

(MPI, BEC) CG Total Time (logarithmic
scale)

=BEC_G4_64_512
SMFI_64_B4_512
SBEC_126_178_512

SMPI_126_128 512

Time

1 2 4 3 16 32 B4 128 2ZbB 51Z

Ho. of Processors

CG Speedup

—$—BEC_64_64_512 ——MPI_64_64_512

4—BEC_128_128_512—=—MPI_128_128_512

2500

2000
150.0
1000

500

speedup

il 2 4 8 16 32 64 128 256 512

number of processors

Figure 3. Performance of Conjugate Gradient

BEC based on a Beta release. Experiences from imple-
menting these three can be summarized as the follow-
ing:

1. BEC can support unstructured applications very
efficiently (as intended).

2. With a few lines of BEC code automatically invok-
ing its built-in bundling, it can achieve very good
application performance that would require very
complex MPI codes to match (to our surprise).

3. BEC’s global address space (GAS) allows easy al-
gorithm design and expression of parallelism be-
yond MPI; and its built-in dynamic bundling con-
cept provides capabilities for efficient implemen-
tation (a capability not yet available in existing
GAS languages). This combination can overcome
programming difficulties that prevent many appli-
cations from becoming MPI parallel applications,
because it frees application programmers from sys-
tem level details unrelated to their own domain
expertise.

Finally,the built-in efficient support for random fine-
grained shared data accesses raises the level of GAS
programming abstraction, and advances the state of
the art. BEC can help smooth migration from MPI to
GAS programming models.

4 Acknowlegement

This research was sponsored by Sandia National
Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Depart-
ment of Energy’s National Nuclear Security Adminis-
tration under Contract DE-AC04-94-AL85000.

This research used resources of the National Energy
Research Scientific Computing Center at Lawrence
Berkeley National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

Sue Goudy, Jonathan Brown, and Shan Shan Huang
made many contributions to the research efforts that
led to the BEC programming environment. Ron
Brightwell helped a lot in seeking funding support for
this research. Weicai Ye did a lot of work in data col-
lection, test case preparation, and information gath-
ering. We would like to express our appreciation to
Bill Camp for his constructive criticism, encourage-
ment, and support for our programming model re-
search. Many thanks to Danny Rintoul for support-
ing the BEC research through CSRI DT. We would
like to thank Neil Pundit for his helpful coaching,
and Jim Ang for his enthusiastic support for this re-
search. Many thanks to David Womble for provid-
ing student funding through CSRI. Ron Brightwell and
Bruce Hendrickson pointed out some related references.
Many thanks also to Rolf Riesen, Kevin Petretti, Mike
Glass, Kevin Brown, Courtenay Vaughan, Bruce Hen-
drickson, Steve Plimpton, Doug Doerfler, Brice Fisher,
David Burnholdt, Maya Gokhale, and Ron Oldfield.

The BEC model was inspired by the PRAM model
[10] and algorithms research of 1980s- 1990s, the BSP
model [13], and also more recent work in Global Ad-
dress Space. We would like to acknowledge the lead-
ers for their contributions. These notably include Uzi
Vishkin, Leslie Valiant, Bill Carlson, Kathy Yelick, and
Bob Numrich. In particular, we gratefully acknowledge
Uzi Vishkin and Bill Carlson for their encouragement.
Thanks also to the UPC Consortium and, in particular,
Lauren Smith, Tarek El-Ghazawi, Phil Merkey, Steve
Seidel, and Dan Bonachea.

References

[1] www.csm.ornl.gov/pvm/pvm_home.html.

[2] www.opengroup.org/certification/posix-
home.html.

[3] OpenMP fortran application interface version 1.1.
WWW.Openmp.org.

[4] UPC language specification (v 1.2).
http://www.gwu.edu/ upc/documentation.html.

[5] www.co-array.org/.

[6] Jonathan L. Brown and Zhaofang Wen. PRAM C:
A new parallel programming environment for fine-
grained and coarse-grained parallelism. Techni-
cal Report SAND2004-6171, Sandia National Lab,
2004.

[7] K. Yelick et. al. Titanium, a high-performance
Java dialect. Concurrency: Practice and FExperi-
ence, 10:825-836, 1998.

[8] Sue Goudy, Shan Shan Huang, and Zhaofang Wen.
Translating a high level PGAS program into the
intermediate language BEC. Technical Report
SAND2006-0422, Sandia National Lab, 2006.

[9] Robert Graybill. High productivity language sys-
tems - the path forward (keynote). In Proceed-
ings of the PGAS Programming Models Confer-
ence, Minneapolis, MN, September 2005.

[10] HPC Challenge. Random Access Rules.

http://icl.cs.utk.edu/projectsfiles/hpce/RandomAccess/ .

[11] IBM. The X10 Programming Language.
http://x10.sourceforge.net/.
[12] NPACI. SHMEM tutorial page.

www.npaci.edu/T3E/shmem.html, 2005.

[13] M. Snir, S. Otto, S. Huss-Lederman, D. Walker,
and J. Dongarra. MPI-The Complete Reference,
Volume 1, The MPI core. The MIT Press, 1998.

[14] Cray (url). Chapel — The Cas-
cade High-Productivity Language.
http://chapel.cs.washington.edu/.

[15] MPI Forum (url). MPI-2: Extensions to
the Message-Passing Interface. WWW.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[16] Zhaofang Wen, Junfeng Wu, and Yuesheng Xu.
Bec specification and programming reference.
Technical Report SAND2007-7617, Sandia Na-
tional Lab, Albuquerque, NM, 2007.

