SAND2014-4336C

Opportunistic Application-level Fault Detection
through Adaptive Redundant Multithreading

Saurabh Hukerikar*, Keita Teranishif, Pedro C. Diniz*, Robert F. Lucas*
*Information Sciences Institute
University of Southern California
Marina del Rey, CA, USA
Email: {saurabh, pedro, rflucas}@isi.edu

tSandia National Laboratories
Livermore, CA, USA
Email: knteran@sandia.gov

Abstract—As the scale and complexity of future High Perfor-
mance Computing systems continues to grow, the rising frequency
of faults and errors and their impact on HPC applications will
make it increasingly difficult to accomplish useful computation.
Redundancy based approaches usually entail complete replication
of the program state or the computation and therefore incur
substantial overhead to application performance. Therefore, the
wide-scale use of full redundancy in future exascale class com-
puting systems is not a viable solution for error detection and
correction.

In this paper, we present an application level fault detection
approach that is based on adaptive redundant multithreading.
Through a language level directive, the programmer can define
structured code blocks which are executed by multiple threads
and the outputs are compared to detect the presence of errors
in the computation. The redundant execution is managed by a
runtime system which continuously observes and learns about the
fault tolerance state of the system resources and reasons whether
redundant multithreading should enabled/disabled. The compiler
outlines the code blocks and by providing such flexible building
blocks for application specific fault detection, our approach
makes possible more reasonable performance overheads than full
redundancy. Our results show that the overheads to application
performance are in the range of 4% to 70% rather than those
incurred by complete replication, which are always in the excess
of 100%. These are achieved through programmer managed fault
coverage together with the runtime system managing redundant
execution based on continuous awareness of the rate and source
of system faults.

I. INTRODUCTION

High Performance Computing (HPC) systems today em-
ploy millions of processor and memory chips to drive floating
point performance. These recent trends suggest that future
exascale HPC systems will be built from hundreds of millions
of components organized in complex hierarchies [1] to satiate
the demand for faster and more accurate scientific computa-
tions. In systems of such scale, reliability becomes a significant
concern, since the overall system reliability decreases rapidly
with growing number of system components. Long-running
scientific applications are therefore increasingly likely to incur
errors during their execution on such large systems, limiting
application scalability.

The dominant techniques over the past two decades, to

deal with failures in HPC systems, have been those based
on checkpoint and restart (C/R). This entails an overhead
to application performance due to the need to periodically
save the complete state of the system to persistent storage.
Therefore, such techniques will be increasingly problematic in
future massive-scale HPC systems. Some studies even suggest
that C/R may no longer be a viable solution if the interval to
create and commit coordinated checkpoints or that for recovery
exceeds the Mean Time to Failure of the system [2].

Other well-known fault tolerance techniques for error de-
tection and correction include those based on redundancy,
either in space or in time. An N-modular redundancy approach
entails creating as many replicas of the computation. Errors
are detected and in some cases masked by comparing the
results and majority voting. HPC applications themselves can
participate in the process of fault detection and correction.
Much research has been done on Algorithm based Fault
Tolerance (ABFT) [3] in the context of various scientific
algorithms. These techniques employ encoding on specific data
structures and require the application programmer to adapt the
algorithms to operate on the encoded data structures. While
ABFT techniques offer the application with capabilities to
detect and correct errors within its state, there are currently
no mechanisms for such application level knowledge, that is
unique to specific scientific algorithms, to be exploited by the
system software. None of the presently used fault detection
and correction techniques recognize that faults in the system
are after all anomalous events and therefore do not seek to
understand the nature of the fault, its location nor do they
assess its impact on the application outcome. Therefore in the
case of most current techniques, the trade-off space between
the fault coverage offered by a resilience mechanism and the
overhead to application performance is not explored.

In this paper, we present an application level solution that
adaptively applies redundant multithreading for fault detection.
We propose a simple language level directive to allow HPC
application programmers to define regions or functions in their
code which can be executed by redundant thread contexts for
fault detection. Such a language directive then enables our
compiler infrastructure to create flexible spheres of replication.
A sphere of replication is a compiler outlined structured code
block that is optionally executed by multiple redundant threads.



Also integral to our approach is a runtime system that monitors
events in the system which suggest that faults are imminent.
By observing the rate and source of such events, the runtime
can make reasoned judgments on when to execute the compiler
outlined code blocks using redundant threads and the extent of
these spheres of replication. The application level fault detec-
tion is therefore enabled opportunistically. Early fault detection
at the application level can often enable early and effective
recovery or task migration before it leads to catastrophic
results for the application’s outcome. In this work we focus
on observing and learning from warnings for imminent faults
and not on the prediction of faults themselves. Our strategy
is entirely software based and does not have any specific re-
quirements from the hardware. While the occurrences of faults
are inherently unpredictable, there are sufficient indicators in
modern hardware systems that can provide early warnings that
the system is about to experience more faults/errors. Therefore,
the application begins fault detection only when the runtime
infers that the system resources are experiencing events that
may be construed detrimental to application correctness.

The rest of this paper is organized as follows: Section II de-
scribes the concept of redundant multithreading (RMT) while
Section III details the need for flexible and adaptive application
of RMT for fault detection. Section IV explains the role of the
runtime system and the mechanics of the adaptive redundant
multithreading for fault detection. Section V describes our
experiments while Section VI presents experimental results.

II. REDUNDANT MULTITHREADING

The basis of our approach is Redundant Multithreading
(RMT) which has been used as a common form of fault
detection [4]. Unlike techniques that use redundant bits on
storage and logic components in hardware, RMT duplicates
part or complete program execution and compares the re-
spective outputs to detect the presence of errors. One of
the key concepts in RMT is the sphere of replication [5],
which represents a logical boundary that includes an unit
of computation that can be replicated (Figure 1). Any fault
that occurs within the sphere of replication propagates to its
boundary. Faults are detected by comparing specific outputs
from the redundant execution of the spheres. Any faults that
do not manifest themselves at the boundary of the sphere in
the output values get masked and are treated as benign in terms
of their impact to the application outcome.

The benefit of software-based RMT approaches is that the
redundant execution tends to be loosely coupled. The inputs at
the boundary of the sphere of replication and the outputs that
are compared tend to be part of the application programmer
visible state. Much of the intermediate state does not need
to be replicated amongst the redundantly executed contexts.
Needless to say there is degradation in application performance
due to partial or complete redundant execution of the applica-
tion’s instructions by two independent threads. In the context
of scientific applications running on large scale systems, the
performance and energy penalty of using program-level RMT
at a system-wide level is potentially massive.

While using replication for fault detection and/or correc-
tion, managing the size and extent of the sphere of replication
is an important consideration that affects the overhead to
application performance. The key questions are:

I Input 1 I

Input N
Input 1' Input 2' | Input N]
- - o

M [ — .
|
|shared Hata (read only) :l
T T
|
— 1 I

replicated
inputs

v
replicated
thread O thread 1 computation
) threads
¥ ; ¥ localized
[ Output 1 ] Qutput M outputs
{non-cbservable)
X X Computation
[ Output 1 ] [ Output M ] observable
T outputs
; v

— | value
COMPARATOR | | mMismatch .~

Fig. 1. Concept of Redundant Multithreading (RMT)

e  For which parts of the HPC application will the
redundant execution mechanism detect faults?
Fault coverage can be extended to specific regions of
scientific application code whose execution outcome
will indicate the presence of errors in the program
state of the application.

o What are the inputs to the application code block and
whether they need to be replicated?
Scientific applications often operate on large problem
sizes and replicating inputs has important implications
for cache bandwidth performance. On the other hand,
the failure to replicate inputs may potentially lead the
redundant threads on divergent execution paths.

o What are the outputs values from the application code

block that need to be compared in order to detect the
presence of faults in the computation?
In general, any values that are computed within the
sphere of replication must be compared to check for
mismatch. The failure to compare meaningful appli-
cation values potentially compromises fault coverage
and the usefulness of redundant execution. However,
unnecessary comparisons of output values increases
the overhead without improving fault detection cover-
age.

III. FLEXIBLE SPHERES OF REPLICATION

Various algorithmic fault tolerance techniques are based
on application programmers leveraging their scientific domain
knowledge to adapt the data structures and algorithms for
error detection and correction [3]. Application programmers
tend to be well-positioned to understand the fault coverage
requirements of their application codes. Often the algorithms
of these scientific applications afford partitioning into well-
defined regions of computation that map well onto spheres of
replication. The programmers can identify such code regions,
which may be executed by redundant thread contexts, and
specific variables in the application state that can be checked
to indicate the presence of errors. However, there are currently
no convenient mechanisms that allow programmers to control
the fault coverage to match the requirements and algorithmic



features of the application. Therefore, to effectively manage
the overheads of redundant computation for scientific applica-
tions, we propose flexible spheres of replication. Based on a
preprocessor directive, these offer an application level scoping
mechanism that allows the programmer to delineate specific
regions in the application code that require fault detection.
This constitutes an explicit programming model approach for
application level fault detection. It allows the programmer to
control the fault coverage in their codes and therefore manage
the performance overhead of replicated execution.

A. Robust Directive: Syntax and Semantics

We present a programming directive that is based on a
preprocessor pragma directive [6] that enables programmers to
define regions of application code. The syntax is as follows:

#pragma robust private(variable list...)
shared (variable list...)
{
/%
code
*/
}

The code that is textually enclosed between the beginning
and the end of the code block following the directive is exe-
cuted by independent threads within the application process.
The extent of the directive however does not span multiple
functions/routines or code files. The application code contained
in the directive scope represents an unit of execution that can
be passed to a threading library.

The programming directive allows for the following scop-
ing clauses, similar to those offered by the OpenMP standard:

e private: The data variables in this list are treated
private, that is each redundant thread has its own copy.

e shared: The data variables in the shared can be
accessed by either of the redundant threads and are
held in a single memory location.

e compare: The data variables in the list are compared
at the end of execution of both redundant threads.
Any mismatch in the values is communicated to the
runtime system.

While the #pragma robust directive provides the pro-
grammer with control over the scope of specific regions in the
application code, it is the compiler which outlines these regions
into spheres of replication. Whether these spheres are executed
by redundant threads for fault detection is a decision that is
deferred to the runtime system. When application execution
begins, the code contained in the #pragma robust code
block programmer is executed serially. When the runtime
system signals the application, it enables redundant multi-
threaded execution. Additionally, whether the inputs should
be replicated is also determined by the runtime system. Any
mismatch in the values of the variables in the compare clause is
communicated to the runtime system. In our implementation
of the runtime system, the default behavior is to terminate
and restart the application. Such flexibility in the scope of the
spheres of replication and dynamic adaptation between serial
and redundant multithreaded execution allows opportunistic
application level fault detection.

B. Compiler Outlining

We employ source outlining to extract the structured block
encompassed by the #pragma robust directive and create
an outlined function. The outlined function can be executed
serially by being called as a regular procedure call. Alterna-
tively, when the runtime signals the application, the function
is executed by duplicate threads by passing its pointer to
a threading library. Our compiler inserts code such that the
outlined function is conditionally executed, either in serial
or multithreaded mode, based on a flag that is managed by
the runtime. Additionally, the application code is extended,
through source level transformations, with instructions that
compare the values generated by the redundant threads and
informs the runtime system in case of a mismatch in values.
The compiler used in this work is based on the ROSE [7]
source-to-source compiler infrastructure.

For the data variables that are specified in the private
scoping clause, a new object created for each of the redundant
threads. The data variables in the shared clause are optionally
replicated. To accomplish this, the compiler duplicates the
declaration of such variables for each redundant thread.

IV. RUNTIME ADAPTATION FOR OPPORTUNISTIC FAULT
DETECTION

The role of the runtime system in the opportunistic fault
detection is to leverage the flexible spheres of replication. This
entails enabling/disabling the redundant execution when appro-
priate. The runtime system also plays a role in determining the
scope of the spheres of replication and manages the mapping
of the redundant threads to processor cores.

A. System Events and Indicators

The basis of our opportunistic fault detection is the well-
reasoned use of redundant execution. This requires that the
runtime continuously evaluate the fault tolerance state of
the system resources by observing anomalous events in the
system. These events usually provide sufficient indication on
the future occurrence of errors that are potentially fatal to the
applications running on these systems. Broadly, the anomalous
events may be classified into three categories: (i) Uncorrected
errors: these are unrecoverable errors from the hardware point
of view. The system software may potentially recover from
such errors through software based correction or masking; (ii)
Corrected errors: these are potentially correctable in hardware,
without engaging the system software; (iii) Fatal errors: such
events are correctable neither in hardware nor by system
software. These are usually catastrophic for the system and
the applications running on them. Our runtime system monitors
and logs events from the first two categories for each processor
core and DRAM DIMM module in the system.

The occurrences of such events are communicated up
the system stack through an interrupt mechanism. When the
interrupt is raised, the operating system logs the error and
either kills the application or reboots the system based on
the type and location of the error. Modern hardware design
specifications include mechanisms to detect and communicate
such anomalous event knowledge to the software stack. For
example, the Machine Check Exception (MCE) [8] is part
of the x86_64 specification. Similarly, the ACPI Platform



Error Interface [9] provides indicators on hardware component
status, overheating, bad DIMMs etc. while the Advanced Error
Reporting (AER) for the PCI Express gathers and reports the
error information. Examples of events are (i) correctable ECC
errors on DRAM DIMMs, (ii) PCI bus parity errors, (iii)
cache ECC errors, (iv) DRAM scrubbing (which if occurs too
frequently indicates a potential DIMM failure) (v) TLB Errors
(vi) Memory Controller errors. Based on the type of event and
interval between them, the runtime system makes a quantitative
assessment of the vulnerability of the system resources.

B. Managing Redundancy and Flexible Spheres of Replication

The critical decision that the runtime system needs to make
is when to enable and disable the redundant multithreaded
execution of the programmer defined spheres of replication
based on the occurrence of the anomalous events. The runtime
system defines a metric called the Time Between Events
(TBE) (which is equivalent to the Time Between Failure (TBF)
metric, except that we are interested in events rather than
failures). Similarly the runtime also tracks the Time Since
Last Event (TSLE) for each resource it monitors, including
the processor cores and DIMM memory modules. Additionally
the runtime separately calculates these metrics for cache based
events, processor exceptions and for DRAM DIMMs.

When application execution begins, the TBE for all re-
sources is initialized to zero. Any instance of the pragma
defined structured code block is executed serially. Upon the
occurrence of the first event after execution begins, the run-
time enables redundancy through duplicate threading for the
execution of all subsequent pragma defined structured code
blocks. The output values are compared to detect the presence
of errors in the computation.

The TSLE for the system resource that experienced the
event is initialized and is updated with the application execu-
tion time elapsed since the event. The TBE is also updated as
subsequent events occur. When the TSLE exceeds the TBE,
the redundant execution is turned off. Further instances of
the structured code blocks are executed serially i.e. with fault
detection disabled. This enables more effective management of
the application performance overhead such that fault detection
is enabled over a limited interval following anomalous events,
in anticipation of further events. The redundant execution is
disabled when no events are experienced over a certain interval
and the system resources are deemed stable. However, during
periods that experience intermittent events or bursts of errors,
the fault detection remains enabled for an extended duration.

The other important capability that the runtime system
offers is managing the scope of the spheres of replication.
While the compiler outlines the pragma defined structured
blocks, whether the input variables to the code block are
included within the sphere of replication is decided upon at
runtime. These decisions are based on the observation of the
type of events. Duplicating the inputs places greater bandwidth
demand on the memory hierarchy. Therefore, in the case of
processor exceptions, only the outlined structured block is
executed redundantly without replicating the shared inputs.
When the TSLE of cache or DRAM ECC events exceeds the
TBE, the runtime also enables the replication of the shared
inputs such that the redundant threads have a private copy

of the inputs. This enables the runtime system to control
the extent of the fault coverage and manage the associated
application performance overhead based on the type of events
in the system.

C. Resilience Aware Thread Mapping

We can view the sphere of replication as defined by the
pragma directive at the application level as a logical unit of
computation. The code block is executed by multiple redundant
threads on processor cores in the physical domain. The runtime
system extends the fault coverage of the structured code
block from the logical to the physical domain by managing
the mapping of the redundant threads to processor cores.
The runtime system assigns the duplicate threads to specific
processor cores in a shared memory multiprocessor (SMP)
system by observing the event rates for each processor core.

Our runtime system employs the following two policies:

o Temporal Redundancy: based on mapping the redun-
dant thread as a trailing thread behind the main thread
on the same processor core. This extends the fault
coverage of the computation in time rather than space.
It also offers data locality advantages since the shared
input data variables can be used by either of the
redundant threads. The runtime system employs this
policy when the events are transient.

e  Spatial Redundancy: based on mapping redundant
threads to separate processor cores. This provides
broader fault coverage since the redundant threads are
executed on separate hardware, but needs the input
data to be replicated and communicated to the private
cache of the core that runs the duplicate redundant
thread. The runtime system extends the fault coverage
across separate physical cores when the processor
executing the main thread has experienced intermittent
events or a burst of fault events in a short period of
time. The duplicate thread is assigned to a "healthy”
core i.e. one that has experienced fewer events in its
recent history.

D. Example of Runtime Adaptation for Opportunistic Fault
Detection

To illustrate how adaptive redundant multithreading using
the above mechanisms enables opportunistic fault detection,
we show a simple and illustrative example using the sparse
matrix-vector multiplication (SpMV). The SpMV computation
consists of iteratively multiplying a constant sparse matrix by
an input vector. We assume that the sparse matrix is repre-
sented by the Compressed Storage Row (CSR) format which
enables better memory access latencies, memory bandwidth
and lower cache interference. Although various optimizations
are possible based on matrix blocking strategies, for the
purpose of this illustration we place the body of the outer
for loop i.e. the inner product in the #pragma robust
structured code block (as shown in the code below). The
reduced vector element y[i] for every row is the output value
generated at the boundary of the sphere of replication that can
be compared when the iteration of the outer loop is executed
by duplicate threads.



for (i = 0; i < N; i++)
#pragma robust private(j) shared(row_ptr, a, Xx)
compare(y[i])

for(j = row_ptr[i]; j < row_ptr[i+1]; j++)
yli] += a[jlxx[col_ind[j]];

The figure 2 illustrates the timeline view of the execu-
tion of the SpMV. Each trapezoidal structure represents the
execution of a structured code block by duplicate threads
and the comparison of the output values to detect errors,
before the execution continues. We illustrate two scenarios:
Figure 2(a), represents an execution that experiences a single
transient event. When the execution commences, the matrix
row - vector multiplication is executed serially i.e. by a single
thread context. When the first event occurs, the interrupt to
the OS causes a signal to be passed to the runtime system
which in turn causes the runtime to signal the application to
enable RMT. The subsequent iterations of the outer loop (i.e.
the sparse matrix row-vector multiplication) are executed by
the compiler inserted code that forks duplicate threads and
compares the reduced y[i] produced by each thread. When the
runtime observes no events for an interval longer than TBE
(i.e TSLE >TBE), it disables the RMT by passing a signal to
the application.

The figure 2(b) illustrates an SpMV execution run during
which the runtime observes the occurrence of a single transient
event early into the execution and burst of multiple events
later on. Since the first fault event occurs very early into the
execution, only a limited number of iterations are performed
by duplicate redundant threads. However when the second
event occurs, it is followed by a burst of events such that the
TSLE continuously remains smaller than the TBE. The RMT
execution is not disabled until the application converges. If
there is mismatch in the output value y[i] during any iteration,
the runtime is notified. The runtime can initiate recovery, task
migration or terminate and restart the application. But since the
emphasis of this work is on fault detection, the current runtime
system design always chooses to terminate the application.

V. EXPERIMENTAL EVALUATION
A. Fault Model

The adaptive RMT is based on the observation of anoma-
lous events in the system. Our fault injection framework
simulates such fault events and the resulting interrupt by
signaling the runtime system. This is accomplished by sending
the USRI signal to the runtime system which in turn signals
the application process to enable or disable the redundant
execution of the compiler outlined spheres of replication.
The framework simulates events such as corrected DRAM
ECC error notifications, PCI bus parity errors, corrected cache
ECC errors, DRAM scrubbing notifications and recoverable
processor exceptions. The nature of the fault events is such
that they do not perturb any aspect of the application state
or the computation. The fault events are randomly generated
during the application execution and are logged by the runtime.

B. Applications

We evaluate four computational kernels/applications that
demonstrate the application level fault detection through the
creation of flexible spheres of replication and adaptive RMT.

1) Double Precision Matrix Multiplication (DGEMM): For
the double-precision matrix-matrix multiplication (DGEMM)
kernel, we define the pragma block to include the inner
dot product of the matrix multiplication i.e. the dot product
computation resulting from the multiplication of a single row
and single column of the operand matrices. When this code
block is executed by multiple redundant threads, the reduced
dot product is compared to detect the presence of errors in the
computation.

2) Sparse Matrix Vector Multiplication (SpMV): In the
case of the Sparse Matrix Vector Multiplication (SpMV), we
enclose the body of the outer for loop i.e. the inner product into
the #pragma robust structured code block, which is then
outlined as a sphere of replication by the compiler. The reduced
vector element y[i] for every row is the output value that is
compared to detect the presence of errors when an iteration of
the outer loop is executed by duplicate threads.

3) Conjugate Gradient (CG): The Conjugate Gradient
(CG) method is an iterative algorithm that solves a system
of linear equations and is implemented such that the initial
solution is iteratively refined. The iterations provide a mono-
tonically decreasing error and therefore an improving approx-
imation to the exact solution. By enclosing each iteration
in the block contained by the #pragma robust directive,
the error value is compared when the iterations are executed
by duplicate threads to detect the presence of errors in the
solution.

4) Self-Stabilizing Conjugate Gradient (SSCG): The self-
stabilizing approach to the conjugate gradient method [10]
identifies a condition that must hold at each iteration for
the solver to converge. Although other algorithmic detection
techniques are possible, we include the solver code in the
structured code block for adaptive redundant execution and
the correctness of the computation is verified by comparing
the stability condition at the end of each iteration.

C. Methodology

Through programmer specified fault coverage which is
adaptively managed by a runtime system, we seek to accom-
plish fault detection at more reasonable overheads to applica-
tion performance than with complete redundancy approaches.
Therefore to understand the impact of adaptive redundant
multithreading on the application performance, we first study
the overheads in the case of single threaded versions of each
of the application codes described above. The generation of
the fault events is randomized, both in terms of the instant
of generation of the initial event and the interval between
subsequent events. The runtime determines whether and when
to enable or disable the redundant execution based on the
TSLE and TBE metrics.

We also seek to understand the performance impact of
adaptive RMT based fault detection in the context of the
multithreaded implementations of the above application codes.
With recent the trend in HPC system architectures of building



N
/

XD

L X
(a)

LI AKEDA

Fig. 2. Example of Runtime Adaptation for Opportunistic Fault Detection: Timeline View of SpMV Execution

2.00

1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Normalized Execution Time

DGEMM
Serial - Fault Free

SpMV
W FTEvents =1

Fig. 3.

systems with multiple cores per chip and multiple sockets
per compute node board, applications use explicit shared
memory programming paradigms such as OpenMP, pThreads
to distribute the computation across all the cores in the system.
The adaptive RMT accounts for the source of the events and
redundant execution is enabled only on processor cores which
have experienced events recently. The healthy cores i.e. those
which have not seen any event in the recent past continue
executing their programmer defined blocks in sequential mode
with no fault detection. For these experiments, we also perform
random fault event generation and evaluate the overhead to the
application’s time to solution, when the RMT is enabled only
for specific processor cores.

We evaluate the thread assignment policies where the
runtime system manages the mapping of redundant threads
to separate processor cores (spatial redundancy policy) or as
trailing thread to the same processor core (temporal redun-
dancy policy), based on the frequency of fault events. For
each fault event rate, we perform 10000 application runs
with randomized event generation to measure the normalized
average execution time with reference to a fault free execution
time. The evaluation platform is an Intel ™Xeon 8-core 2.4
GHz compute node running the Linux operating system in the
USC HPCC cluster.

VI. RESULTS

The Figure 3 shows average normalized execution times
for the serial implementations of each of the application codes.
The baseline is a fault free execution run (represented by the
1.0x data points in Figures 3 and 4). The remaining data points
show the average normalized application execution times (for
the 10000 experiment runs) when a count of 1, 2, 3, 4 and

FT Events = 2

CG SSCG

B FT Events =3 FT Events =4 B FT Events =5

Results: Performance Evaluation of Fault Detection with Adaptive Redundant Multithreading

5 random fault events are generated during each application
run. In the case of DGEMM, the occurrence of a single event
adds only 5% overhead to the application performance since
a limited number of iterations of the dot product computation
are executed by a redundant thread with checking for errors.
The overhead for SpMV is higher at 20% while the CG
and Self Stabilizing CG is at 8.5% and 7% respectively.
As the number of events per run increases, the amount of
computation that is performed redundantly increases quickly
because the runtime tends to behave conservatively by leaving
the redundant execution and output checking enabled when
there is a burst of fault events or if they occur intermittently.
However, even in the case of five randomized fault events per
application run, which leads to a large chunk of the iterations
of DGEMM, SpMYV, CG, SSCG to be executed redundantly,
the average execution times are 1.78x, 1.81x, 1.7x and 1.74x
respectively (in comparison to the serial fault-free case).

The results summarized in Figure 4(a) show the average
normalized execution times when the applications use an
explicit shared memory programming model such as OpenMP
and all the cores on the test platform are put to work. The
runtime also logs the location of the events. When fault events
are localized to a single processor core, fault detection is
enabled for only that specific core. Therefore, the spheres
of replication assigned to the core experiencing fault events
are executed by a redundant thread and its outputs checked
for errors. The remaining computation assigned to the healthy
cores continues in serial mode. The benefit of such a reasoned
utilization of redundancy for fault detection that is cognizant of
fault sources is evident in Figure 4(a), which in comparison to
Figure 3 shows lower overhead to application execution time
for each of the fault rates.



2.00

1.50

1.00 +—

0.50 +—

Normalized Execution Time

0.00 -
DGEMM SpMV

2.00

CcG S55CG

1.50

1.00

0.50 +—

Normalized Execution Time

0.00
DGEMM
Multithreaded - Fault Free

SpMV
mFTEvents =1

=

Figure 4(b) highlights the comparison between the two core
assignment strategies described in Section IV-C. While figure
4(a) uses trailing redundant threads, those in figure 4(b) map
the redundant threads to separate cores in the context of a SMP
system. The former has cache locality advantages since the
input data in the private caches is reused, whereas the latter
provides more complete fault coverage since the redundant
threads are executed on separate hardware. Notwithstanding
the need for data to be communicated to the private cache
of the core that runs the duplicate redundant thread from the
core that runs the original thread, we note that the separate
core-mapped redundant thread has marginally lower overhead
in comparison to the trailing redundant thread for all the test
applications.

VII. RELATED WORK

In HPC systems, studies have argued for multi-modular
redundancy in compute nodes and have shown to accommodate
a reduction in individual component reliability by a factor
of 100-100,000 to justify the 2x or 3x increase in cost and
energy [11]. Ferreira et. al [12] evaluate the costs and benefits
of using MPI process replication as an alternative to the
widely used checkpoint restart protocols, while Stearley et.
al [13] observe that partial process replication helps increase
the Job Mean Time to Interrupt (JMTTI) of tasks, but that
there is no alternative to full process replication for highly
resilient operation. However, given the scale of future exascale
systems in terms of number components and the complexity
of applications, complete node-level or process-level multi-
modular redundancy would incur exorbitant overhead to costs,
performance and energy.

Hardware solutions that employ redundancy are transparent
to the supervisor software and application programmer, but
require specialized hardware. In the domain of commercial

FT Events =2

CG SSCG
W FTEvents =3 FT Events =4 B FTEvents =5

g. 4. Results: (a) Multithreaded Computation (b) Core Assignment for Redundant threads to Separate Processor Cores

transaction processing, fault tolerant servers such as the Tan-
dem Non-Stop [14] and later the HP NonStop [15] used two
redundant processors running in locked step. The overheads of
energy and cost to widely employ such hardware techniques
for exascale HPC systems however, would be extremely high.
Approaches that leverage multiple contexts in Simultaneous
Multithreaded (SMT) processors have also been studied. Such
RMT approaches show slightly lower power and performance
overheads in comparison to redundant locked-step processor
based systems [5] [16].

Software-based redundant multithreading approaches tend
to offer more flexibility and are less expensive in terms of
silicon area as well as chip development and verification
costs. SWIFT [17] is a compiler-based transformation which
duplicates all program instructions and inserts comparison
instructions during code generation and the duplicated instruc-
tions fill the scheduling slack. The DAFT [18] approach uses
a compiler transformation that duplicates the entire program
in a redundant thread that trails the main thread and inserts
instructions for error checking.

VIII. CONCLUSION

As faults become increasingly prevalent in HPC systems,
techniques which can tailor the extent of protection to the
requirements of the application and to the state of the system
will be needed. In this paper, we presented an approach that
enables opportunistic fault detection within the application
program state based on a language level directive. It enables
the programmer to define structured blocks within their appli-
cation codes. The error detection via redundant multithreaded
execution of such code blocks is opportunistically enabled by
the runtime system based on the observation and assessment
of the rate and source of fault events in the system. While a
complete redundant execution incurs overheads to application



performance of the order of at least 2x, such a flexible
approach enables more reasonable overheads, in the range of
1.04x to 1.7x. By enabling programmer directed, application
specific fault coverage, this approach provides substantial
savings to application performance overheads in the context
of long-running scientific applications when compared to fault
detection based on complete redundant execution.

ACKNOWLEDGMENT

Partial support for this work was provided by the US Army
Research Office (Award W911NF-13-1-0219) and through the
Scientific Discovery through Advanced Computing (SciDAC)
program funded by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research under award
number DE-SC0006844.

This work was also supported by the U.S. Department
of Energy (DOE) National Nuclear Security Administration
(NNSA) Advanced Simulation and Computing (ASC) pro-
gram. Sandia National Laboratories is a multi-program labo-
ratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

REFERENCES

[1] P. Kogge, K. Bergman, S. Borkar, and et al., “Exascale Comput-
ing Study: Technology Challenges in Achieving Exascale systems,’
DARPA, Tech. Rep., Sept 2008.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward Exascale Resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374-388, 2009.

[3] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithmic Based
Fault Tolerance Applied to High Performance Computing,” CoRR, 2008.

[4] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design
and Evaluation of Redundant Multithreading Alternatives,” SIGARCH
Computer Architecture News, pp. 99-110, May 2002.

(5]

(6]

(71
(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” SIGARCH Computer Architecture News,
pp. 25-36, May 2000.

S. Hukerikar, P. Diniz, and R. Lucas, “A Case for Adaptive Redundancy
for HPC Resilience,” pp. 690-697, 2013.

“Rose Compiler,” http://www.rosecompiler.org.

Intel, “Intel 64 and IA-32 Architectures Software Developers Manual,”
Tech. Rep., 2011.

P. Sakthikumar and V. J. Zimmer, “A Tour beyond BIOS Implementing
the ACPI Platform Error Interface with the Unified Extensible Firmware
Interface,” Intel Corporation, Tech. Rep., January 2013.

P. Sao and R. Vuduc, “Self-stabilizing iterative solvers,” in Proceedings
of the Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, 2013, pp. 1-8.

C. Engelmann, H. H. Ong, and S. L. Scott, “The Case for Modular
Redundancy in Large-scale High Performance Computing Systems,” in
International Conference on Parallel and Distributed Computing and
Networks, February 2009, pp. 189-194.

K. Ferreira, J. Stearley, J. H. Laros, III, and et al., “Evaluating the
Viability of Process Replication Reliability for Exascale Systems,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1-12.

J. Stearley, K. Ferreira, D. Robinson, and et al., “Does Partial Repli-
cation Pay-off?” in IEEE/IFIP 42nd International Conference on De-
pendable Systems and Networks Workshops (DSN-W), 2012.

D. McEvoy, “The Architecture of Tandem’s NonStop System,” in
Proceedings of the ACM 81 conference. New York, NY, USA: ACM,
1981.

D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “NonStop Advanced Architecture,” in International
Conference on Dependable Systems and Networks, 2005, pp. 12-21.

T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-Fault Recov-
ery using Simultaneous Multithreading,” in 29th Annual International
Symposium on Computer Architecture, 2002, 2002, pp. 87-98.

G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August,
“SWIFT: Software Implemented Fault Tolerance,” in International
Symposium on Code Generation and Optimization, 2005, 2005, pp.
243-254.

Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: Decou-
pled Acyclic Fault Tolerance,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, ser.
PACT 10, 2010, pp. 87-98.



