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Summary

Stable and accurate numerical modeling of seismic wave 
propagation in the vicinity of high-contrast interfaces is
achieved with straightforward modifications to the
conventional, rectangular-staggered-grid, finite-difference
(FD) method. Improvements in material parameter 
averaging and spatial differencing of wavefield variables 
yield high-quality synthetic seismic data.     

Introduction

Interfaces between air and rock present perhaps the 
strongest contrast in medium properties for propagating 
seismic waves.  Air-rock interfaces occur at the earth’s 
surface, where the vast majority of seismic data are 
recorded, and in association with underground voids, caves, 
caverns, mines, tunnels, or other subterranean man-made 
facilities.  Typically, the particular medium parameter with 
greatest contrast is mass density, ranging from ~1 kg/m3 for 
air to ~2800 kg/m3 in hard rock environments.

Seismic wave propagation modelers have long noted that 
time-domain finite-difference algorithms experience 
numerical instability problems with media containing large 
mass density variations. It is emphasized that these 
instabilities (i.e., unbounded numerical growth in wavefield 
variables with increasing time) are not generated by any 
violation of the CFL condition required for stable FD 
calculations.  In all cases, the FD timestep is chosen to be 
sufficiently small. Rather, instability appears to be induced 
by an abrupt change in mass density at adjacent spatial 
gridpoints exceeding a critical threshold value.  Recent 
investigations by Haney (2007), treating wave propagation 
in acoustic media, have quantified the mathematical 
conditions under which such instabilities arise.  These 
results now need to be extended to elastic media and 
higher-order FD operators.

Several ad hoc approaches are currently utilized by FD
modelers to obtain numerical stability at an air-rock 
interface. A popular technique involves smoothing 
wavespeed and/or mass density across the boundary 
(Frankel and Leith, 1992; Schultz, 1997; Bartel et al., 
2000).  However, this may entail an unacceptable change to 
the model, and does not necessarily lead to accurate seismic 
responses.  The recently-developed rotated staggered grid
method (Saenger et al. 2004) employs modified spatial FD 
operators that apparently enhance stability, albeit at a cost 
of reduced phase and group speed performance.  In the 
present study, we introduce simple modifications into the 

standard staggered grid time-domain FD method, with the 
goal of maintaining stability and increasing accuracy. In 
particular, we adopt the material parameter averaging 
approach advocated by Moczo et al. (2002), and
simultaneously reduce the order of spatial differencing in 
the immediate vicinity of high-contrast interfaces. The 
methodology appears to yield high-quality synthetic 
seismic data, while preserving the many favorable aspects 
of the standard staggered grid FD algorithm.

Previous studies of seismic wave propagation modeling in 
the presence of material discontinuities (e.g., Muir, et al., 
1992; Cunha, 1993; Zahradnik, et al., 1993) attest to the 
continuing relevance and importance of this issue.          

Seismic Data Calculation

Synthetic seismic data for an isotropic elastic medium are 
calculated via an explicit, time-domain, FD method.  A set 
of nine, coupled, first-order, inhomogeneous, linear partial 
differential equations are solved for the particle velocity 
vector components vi(x,t) and the stress tensor components 
σij(x,t).  In rectangular coordinates xi (i=1,2,3), these 
equations, known as the velocity-stress system, are
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ij is the Kronecker delta symbol, and summation over 
repeated subscripts is implied. The elastic medium is 
characterized by mass density (x) and Lamé parameters 
(x) = (x)[(x)22(x)2] and (x) = (x)(x)2, where (x) 
and (x) are the P and S wavespeeds.  Inhomogeneous 
terms in (1a,b) represent body sources of seismic waves: 
fi(x,t) and mij(x,t) are components of the force density vector 
and moment density tensor, respectively.  Note that the 
moment density tensor is split into symmetric and anti-
symmetric parts, indicated by superscripts ‘s’ and ‘a’.

For FD numerical solution, the wavefield variables in 
(1a,b) are stored on uniformly-spaced, staggered, spatial 
and temporal grids.  Figure 1 depicts the spatial storage 
scheme.  The primary advantage of staggered storage over 
alternative non-staggered approaches is greater accuracy in 
numerical differentiation and interpolation. Enhanced 
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Figure 1. Spatial storage scheme for nine elastodynamic 
wavefield variables.  Three earth model parameters (open 
red circles) are stored at the corners of the elementary 
rectangular grid cell. 

accuracy leads, in turn, to reduced numerical dispersion in 
the FD solution of the governing equations. All partial 
derivatives in (1a,b) are approximated with centered, 
staggered, FD operators with second-order accuracy in time 
and Nth-order accuracy in space (e.g., Graves, 1996).
Explicit time-updating formulae for the nine dependent 
variables are readily derived.

Earth model parameters λ, μ, and ρ needed for solution of 
the velocity-stress system are commonly stored on a non-
staggered spatial grid (open red circles in figure 1).  
Temporal updating of the particle velocity vector 
components requires mass density values interpolated onto 
velocity storage locations (triangles in figure 1).  Let ρ1 and 
ρ2 denote two adjacent stored densities.  Then, the 
interpolated value is given by the arithmetic average

 21ave
2

1
  .

This value is divided into the stress gradient terms in (1a).  
Similarly, FD updating of shear stress tensor components
located on the faces of the elementary grid cell requires 
interpolated shear moduli. We utilize the harmonic average  











4321ave

1111

4

11


,

where μn refer to four surrounding stored values.  μave could 
be subsequently multiplied into the velocity gradient terms
in equation (1b) (but see below).  No spatial averaging of 
the Lamé parameter λ is necessary for updating the 
compressional stress tensor components.        

The above material parameter averaging approach was 
developed by Moczo et al. (2002).  In numerous tests, we 
have observed that it yields stable numerical solutions at
planar air-rock interfaces, using a standard staggered grid 

3D FD algorithm.  In contrast, alternative schemes
involving arithmetic averaging of mass buoyancy 
(reciprocal mass density) and shear modulus are unstable.
               
A reduction in the arithmetic operation count associated 
with material parameter averaging is achieved by storing 
ρ/2 and 1/4μ at gridpoints.  The interpolated shear 
compliance cave = 1/μave is then divided into the velocity 
gradients of (1b). If a shear modulus μn at a gridpoint 
vanishes (in the case where the gridpoint samples an ideal 
fluid), it is replaced by a very small value during the model 
storage phase, prior to finite-difference calculations.  We 
have used μ = ρβ2 with β = 0.001 m/s, and have not 
observed any adverse effects.  Alternately, conditional 
logic can be used to skip the division.     

Air-Rock Interface Example

Consider a simple earth model consisting of air (α = 350 
ms/, β = 0 m/s, ρ = 1 kg/m3) overlying competent rock (α = 
4000 m/s, β = 2400 m/s, ρ = 2500 kg/m3).  Hence, contrasts 
in P-wave speed and mass density across the horizontal 
interface at z = 0 m are 11.4:1 and 2500:1 respectively.  A
vertical force source is buried 10.5 m below this interface
and is activated by a Ricker wavelet with peak frequency
25 Hz (1% amplitude spectrum bandwidth: 2-69 Hz).  An 
array of receivers is distributed vertically across the 
interface, and is located immediately above the source
point (i.e., with no horizontal offset).

Despite the close proximity of the seismic energy source to 
the high-contrast interface, all FD numerical simulations, 
employing the material parameter averaging approach 
described above, remain stable. Spatial sampling intervals 
are hx = hy = hz = 1 m, and the timestep is Δt = 0.120 s, 
implying that CFL stability parameters for O(2,2) and 
O(4,4) FD algorithms are less than unity. The fine spatial 
sampling assures that the shortest wavelength propagating 
within air is sampled by about five gridpoints. When 
alternative material parameter averaging schemes are used, 
these FD simulations go unstable!

Figure 2 illustrates vertical particle velocity (Vz) and 
pressure (P) traces, calculated with two different spatial 
differencing schemes in the 3D FD algorithm.  For 2nd-
order differencing applied to velocities and stresses all 
waveforms appear reasonable. Vz is continuous across the 
interface, and is delayed in time as the wave propagates 
upward into air. It also has the same magnitude within air 
and rock, consistent with normal incidence reflection and 
transmission coefficients at the interface (R ≈ –1, T ≈ +2). 
Pressure (calculated in the FD algorithm as –1/3 times the 
trace of the stress tensor) is ~10,000 times smaller in air 
than in rock, also in agreement with theory.  

Traces in the right column of figure 2 are calculated with 
conventional 4th-order spatial differencing of velocity and 
stress components.  In stark contrast to the situation with 
2nd-order differencing, large-amplitude oscillatory signals 
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are observed within air.  Although there is closer agreement 
for the signals recorded within rock, the O(V,S)=O(4,4) 
waveforms remain inaccurate.

Figure 3 illustrates the analogous set of traces generated by 
a vertical force source located in air at z = –10.5 m, directly 
above the receiver array.  Once again, O(V,S)=O(2,2) 
calculated waveforms are reasonable, whereas O(4,4) 
responses in rock are clearly non-physical.  Downward-
and upward-propagating waves (within air) travel at much 
lower speed than in figure 2 (within rock), and are thus
readily discernable. In this situation, pressure has the same 
magnitude in both media, and vertical particle velocity is 
~10,000 times smaller in rock.  Although Vz appears zero
near the surface (sampling is ½ grid interval above), it is 
actually non-zero on the surface, consistent with the plane 
transmission coefficient (T ≈ 7 × 10-5).  

Spatial Finite-Differencing          

Traces displayed in figures 2 and 3 are calculated with 
time-domain FD algorithms with 2nd-order (two point) and 
4th-order (four point) spatial differencing applied to the 
velocity vector and stress tensor components.  
Conventional 4th-order differencing produces decidedly
inferior results.   We surmise the reason for this situation as 
follows.  According to equation (1a), the time rate of 
change of a velocity component is proportional to a linear
combination of spatial derivatives of stress components.   
At an air-rock interface, the normal components of velocity 
and stress must be continuous, whereas stress gradients can 
be discontinuous.  When updating a velocity component 
within air adjacent to the interface, the four-point FD 
operator “reaches” across the interface and samples stresses 
within rock.  It is physically inappropriate to apply a rock 
stress (which has far larger magnitude) for updating air 
particle velocities. A second-order FD operator, with 
smaller spatial extent, avoids this physical inconsistency by 
estimating stress gradients only within air.

We have tested this conjecture by calculating seismic 
responses via a hybrid staggered-grid FD algorithm, where 
4th-order spatial differencing is applied to all velocity
components, and 2nd-order differencing is applied to all 
stress components. [We use the symbol O(V,S)=O(4,2) to 
refer to this situation.]  Results identical to the left column 
of figure 2 are obtained (to within typical visual display
scales), thus validating our reasoning.  Unfortunately, 
O(V,S)=O(4,2) differencing does not reproduce the 
favorable results illustrated in the left column of figure 3, 
where the seismic energy source is situated in air above the 
interface.  In this case, stresses within air and rock are 
approximately the same, and particle velocities in air 
exceed those in rock by four orders of magnitude. The 
converse spatial differencing O(V,S)=O(2,4) yields the 
desired results in the left column of figure 3, for similar 
physical/mathematical  reasoning.  In order for the FD 
algorithm to accommodate both situations with the desired 
accuracy, it must utilize symmetric O(V,S)=O(2,2) 

differencing in the vicinity of high-contrast interfaces.
Either asymmetric approach is inadequate. 

Obviously, we desire to retain the well-established 
advantages of 4th-order spatial differencing (i.e., superior 
numerical phase and group speed performance) throughout 
the bulk of a 3D earth model where material parameter 
contrasts are relatively mild.  Accordingly, we have 
implemented a spatial FD operator “switching” scheme, 
whereby the differencing order is reduced from 4 to 2 at
gridpoint locations possessing strong material parameter 
contrasts with immediate neighbors.  Such points are
identified prior to FD updating by scanning the 3D earth 
model grid, and forming dimensionless ratios of parameter
values between adjacent gridpoints. The particular 
threshold value for effecting a “switch” is currently under 
investigation.  Although mass density is clearly the most 
significant parameter, we have encountered some modeling 
situations where P- and S-wave speeds also play a role.          

There are two approaches for implementing the operator 
order switching scheme.  Currently, we employ conditional 
logic within the FD updating loops to decide when to 
change order.  No significant slowdown in algorithm 
execution speed has been observed, although this could 
depend on overall model size.  Alternately, one may 
segregate the gridpoints into two distinct groups (say, near 
and remote from high-contrast interfaces), and apply the 
proper spatial FD operator to each.  The latter approach 
avoids conditional logic, and thus may provide higher 
algorithm execution speed.    

Conclusion and Ongoing Work

Stable and accurate numerical modeling of seismic wave 
propagation in 3D earth models with large parameter 
contrasts is obtained via simple modifications to a standard 
staggered grid O(2,4) FD algorithm.  The material 
parameter averaging scheme advocated by Moczo et al. 
(2002) achieves stability. Reduction of the spatial 
differencing order from 4 to 2 in the immediate vicinity of 
high-contrast interfaces yields superior accuracy.

Current efforts involve implementing the spatial order 
switching scheme in a computationally efficient manner, as 
well as quantitatively understanding the critical threshold 
value(s) mandating a change in order.   Finally, we are 
examining the accuracy of the various spatial differencing 
approaches for simulating coupled air-rock interface waves, 
along plane or non-plane material discontinuity surfaces.   
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Figure 2.   Vertical particle velocity (Vz) and pressure (P) traces generated by a vertical force (Fz) source located in rock at z = 
+10.5 m.  Left and right columns correspond to 2nd-order and 4th-order spatial differencing applied to velocity and stress 
components.  All velocity traces are displayed with identical gain, whereas pressure traces recorded in air (z < 0) are amplified by 
10,000 compared to pressure traces recorded in rock (z ≥ 0). 

Figure 3.  Analogous traces generated by a vertical force source located in air at z = –10.5 m.  All pressure traces are displayed 
with the same gain, whereas velocity traces recorded in rock are amplified by 10,000 compared to velocity traces recorded in air.
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