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Finite-difference modeling of 3D seismic wave propagation in high-contrast media
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Summary

Stable and accurate numerical modeling of seismic wave
propagation in the vicinity of high-contrast interfaces is
achieved with straightforward modifications to the
conventional, rectangular-staggered-grid, finite-difference
(FD) method. Improvements in material parameter
averaging and spatial differencing of wavefield variables
yield high-quality synthetic seismic data.

Introduction

Interfaces between air and rock present perhaps the
strongest contrast in medium properties for propagating
seismic waves. Air-rock interfaces occur at the earth’s
surface, where the vast majority of seismic data are
recorded, and in association with underground voids, caves,
caverns, mines, tunnels, or other subterranean man-made
facilities. Typically, the particular medium parameter with
greatest contrast is mass density, ranging from ~1 kg/m? for
air to ~2800 kg/m” in hard rock environments.

Seismic wave propagation modelers have long noted that
time-domain finite-difference  algorithms experience
numerical instability problems with media containing large
mass density variations. It is emphasized that these
instabilities (i.e., unbounded numerical growth in wavefield
variables with increasing time) are not generated by any
violation of the CFL condition required for stable FD
calculations. In all cases, the FD timestep is chosen to be
sufficiently small. Rather, instability appears to be induced
by an abrupt change in mass density at adjacent spatial
gridpoints exceeding a critical threshold value. Recent
investigations by Haney (2007), treating wave propagation
in acoustic media, have quantified the mathematical
conditions under which such instabilities arise. These
results now need to be extended to elastic media and
higher-order FD operators.

Several ad hoc approaches are currently utilized by FD
modelers to obtain numerical stability at an air-rock
interface. A popular technique involves smoothing
wavespeed and/or mass density across the boundary
(Frankel and Leith, 1992; Schultz, 1997; Bartel et al.,
2000). However, this may entail an unacceptable change to
the model, and does not necessarily lead to accurate seismic
responses. The recently-developed rotated staggered grid
method (Saenger et al. 2004) employs modified spatial FD
operators that apparently enhance stability, albeit at a cost
of reduced phase and group speed performance. In the
present study, we introduce simple modifications into the

standard staggered grid time-domain FD method, with the
goal of maintaining stability and increasing accuracy. In
particular, we adopt the material parameter averaging
approach advocated by Moczo et al. (2002), and
simultaneously reduce the order of spatial differencing in
the immediate vicinity of high-contrast interfaces. The
methodology appears to yield high-quality synthetic
seismic data, while preserving the many favorable aspects
of the standard staggered grid FD algorithm.

Previous studies of seismic wave propagation modeling in
the presence of material discontinuities (e.g., Muir, et al.,
1992; Cunha, 1993; Zahradnik, et al., 1993) attest to the
continuing relevance and importance of this issue.

Seismic Data Calculation

Synthetic seismic data for an isotropic elastic medium are
calculated via an explicit, time-domain, FD method. A set
of nine, coupled, first-order, inhomogeneous, linear partial
differential equations are solved for the particle velocity
vector components v/(x,#) and the stress tensor components
Oi(x,). In rectangular coordinates x; (i=1,2,3), these
equations, known as the velocity-stress system, are
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0; is the Kronecker delta symbol, and summation over
repeated subscripts is implied. The elastic medium is
characterized by mass density p(x) and Lamé parameters
M%) = p(x)[e(x)*~2B(x)°] and u(x) = p(x)B(x)’, where a(x)
and B(x) are the P and S wavespeeds. Inhomogeneous
terms in (la,b) represent body sources of seismic waves:
fix,t) and m;(x,?) are components of the force density vector
and moment density tensor, respectively. Note that the
moment density tensor is split into symmetric and anti-
symmetric parts, indicated by superscripts ‘s’ and ‘a’.

For FD numerical solution, the wavefield variables in
(la,b) are stored on uniformly-spaced, staggered, spatial
and temporal grids. Figure 1 depicts the spatial storage
scheme. The primary advantage of staggered storage over
alternative non-staggered approaches is greater accuracy in
numerical differentiation and interpolation. Enhanced
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Figure 1. Spatial storage scheme for nine elastodynamic
wavefield variables. Three earth model parameters (open
red circles) are stored at the corners of the elementary
rectangular grid cell.

accuracy leads, in turn, to reduced numerical dispersion in
the FD solution of the governing equations. All partial
derivatives in (la)b) are approximated with centered,
staggered, FD operators with second-order accuracy in time
and N"-order accuracy in space (e.g., Graves, 1996).
Explicit time-updating formulae for the nine dependent
variables are readily derived.

Earth model parameters 4, 1, and p needed for solution of
the velocity-stress system are commonly stored on a non-
staggered spatial grid (open red circles in figure 1).
Temporal updating of the particle velocity vector
components requires mass density values interpolated onto
velocity storage locations (triangles in figure 1). Let p; and
p2 denote two adjacent stored densities.  Then, the
interpolated value is given by the arithmetic average
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This value is divided into the stress gradient terms in (1a).
Similarly, FD updating of shear stress tensor components

located on the faces of the elementary grid cell requires
interpolated shear moduli. We utilize the harmonic average
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where 1, refer to four surrounding stored values. g, could
be subsequently multiplied into the velocity gradient terms
in equation (1b) (but see below). No spatial averaging of
the Lamé parameter A is necessary for updating the
compressional stress tensor components.

The above material parameter averaging approach was
developed by Moczo et al. (2002). In numerous tests, we
have observed that it yields stable numerical solutions at
planar air-rock interfaces, using a standard staggered grid

3D FD algorithm. In contrast, alternative schemes
involving arithmetic averaging of mass buoyancy
(reciprocal mass density) and shear modulus are unstable.

A reduction in the arithmetic operation count associated
with material parameter averaging is achieved by storing
p/2 and 1/4u at gridpoints. The interpolated shear
compliance c,ye = 1/uaye 1s then divided into the velocity
gradients of (1b). If a shear modulus u, at a gridpoint
vanishes (in the case where the gridpoint samples an ideal
fluid), it is replaced by a very small value during the model
storage phase, prior to finite-difference calculations. We
have used u = pf* with f = 0.001 m/s, and have not
observed any adverse effects. Alternately, conditional
logic can be used to skip the division.

Air-Rock Interface Example

Consider a simple earth model consisting of air (o = 350
ms/, =0 m/s, p = 1 kg/m®) overlying competent rock (a =
4000 m/s, = 2400 m/s, p = 2500 kg/m®). Hence, contrasts
in P-wave speed and mass density across the horizontal
interface at z = 0 m are 11.4:1 and 2500:1 respectively. A
vertical force source is buried 10.5 m below this interface
and is activated by a Ricker wavelet with peak frequency
25 Hz (1% amplitude spectrum bandwidth: 2-69 Hz). An
array of receivers is distributed vertically across the
interface, and is located immediately above the source
point (i.e., with no horizontal offset).

Despite the close proximity of the seismic energy source to
the high-contrast interface, all FD numerical simulations,
employing the material parameter averaging approach
described above, remain stable. Spatial sampling intervals
are h, = h, = h. = 1 m, and the timestep is Az = 0.120 s,
implying that CFL stability parameters for O(2,2) and
0(4,4) FD algorithms are less than unity. The fine spatial
sampling assures that the shortest wavelength propagating
within air is sampled by about five gridpoints. When
alternative material parameter averaging schemes are used,
these FD simulations go unstable!

Figure 2 illustrates vertical particle velocity (V,) and
pressure (P) traces, calculated with two different spatial
differencing schemes in the 3D FD algorithm. For 2™-
order differencing applied to velocities and stresses all
waveforms appear reasonable. V, is continuous across the
interface, and is delayed in time as the wave propagates
upward into air. It also has the same magnitude within air
and rock, consistent with normal incidence reflection and
transmission coefficients at the interface (R = -1, T = +2).
Pressure (calculated in the FD algorithm as —1/3 times the
trace of the stress tensor) is ~10,000 times smaller in air
than in rock, also in agreement with theory.

Traces in the right column of figure 2 are calculated with
conventional 4™-order spatial differencing of velocity and
stress components. In stark contrast to the situation with
2"_order differencing, large-amplitude oscillatory signals
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are observed within air. Although there is closer agreement
for the signals recorded within rock, the O(V,S)=0(4,4)
waveforms remain inaccurate.

Figure 3 illustrates the analogous set of traces generated by
a vertical force source located in air at z = —10.5 m, directly
above the receiver array. Once again, O(V,S)=0(2,2)
calculated waveforms are reasonable, whereas 0O(4,4)
responses in rock are clearly non-physical. Downward-
and upward-propagating waves (within air) travel at much
lower speed than in figure 2 (within rock), and are thus
readily discernable. In this situation, pressure has the same
magnitude in both media, and vertical particle velocity is
~10,000 times smaller in rock. Although V, appears zero
near the surface (sampling is %2 grid interval above), it is
actually non-zero on the surface, consistent with the plane
transmission coefficient (T = 7 x 10° ).

Spatial Finite-Differencing

Traces displayed in figures 2 and 3 are calculated with
time-domain FD algorithms with 2™-order (two point) and
4™ order (four point) spatial differencing applied to the
velocity vector and stress tensor components.
Conventional 4"-order differencing produces decidedly
inferior results. We surmise the reason for this situation as
follows. According to equation (la), the time rate of
change of a velocity component is proportional to a linear
combination of spatial derivatives of stress components.
At an air-rock interface, the normal components of velocity
and stress must be continuous, whereas stress gradients can
be discontinuous. When updating a velocity component
within air adjacent to the interface, the four-point FD
operator “reaches” across the interface and samples stresses
within rock. It is physically inappropriate to apply a rock
stress (which has far larger magnitude) for updating air
particle velocities. A second-order FD operator, with
smaller spatial extent, avoids this physical inconsistency by
estimating stress gradients only within air.

We have tested this conjecture by calculating seismic
responses via a hybrid staggered-grid FD algorithm, where
4™ order spatial differencing is applied to all velocity
components, and 2™-order differencing is applied to all
stress components. [We use the symbol O(V,S)=0(4,2) to
refer to this situation.] Results identical to the left column
of figure 2 are obtained (to within typical visual display
scales), thus validating our reasoning. Unfortunately,
O(V,5)=0(4,2) differencing does not reproduce the
favorable results illustrated in the left column of figure 3,
where the seismic energy source is situated in air above the
interface. In this case, stresses within air and rock are
approximately the same, and particle velocities in air
exceed those in rock by four orders of magnitude. The
converse spatial differencing O(V,S)=0(2,4) yields the
desired results in the left column of figure 3, for similar
physical/mathematical reasoning. In order for the FD
algorithm to accommodate both situations with the desired
accuracy, it must utilize symmetric O(V,S)=0(2,2)

differencing in the vicinity of high-contrast interfaces.
Either asymmetric approach is inadequate.

Obviously, we desire to retain the well-established
advantages of 4™-order spatial differencing (i.e., superior
numerical phase and group speed performance) throughout
the bulk of a 3D earth model where material parameter
contrasts are relatively mild.  Accordingly, we have
implemented a spatial FD operator “switching” scheme,
whereby the differencing order is reduced from 4 to 2 at
gridpoint locations possessing strong material parameter
contrasts with immediate neighbors. Such points are
identified prior to FD updating by scanning the 3D earth
model grid, and forming dimensionless ratios of parameter
values between adjacent gridpoints. The particular
threshold value for effecting a “switch” is currently under
investigation. Although mass density is clearly the most
significant parameter, we have encountered some modeling
situations where P- and S-wave speeds also play a role.

There are two approaches for implementing the operator
order switching scheme. Currently, we employ conditional
logic within the FD updating loops to decide when to
change order. No significant slowdown in algorithm
execution speed has been observed, although this could
depend on overall model size. Alternately, one may
segregate the gridpoints into two distinct groups (say, near
and remote from high-contrast interfaces), and apply the
proper spatial FD operator to each. The latter approach
avoids conditional logic, and thus may provide higher
algorithm execution speed.

Conclusion and Ongoing Work

Stable and accurate numerical modeling of seismic wave
propagation in 3D earth models with large parameter
contrasts is obtained via simple modifications to a standard
staggered grid O(2,4) FD algorithm. The material
parameter averaging scheme advocated by Moczo et al.
(2002) achieves stability. Reduction of the spatial
differencing order from 4 to 2 in the immediate vicinity of
high-contrast interfaces yields superior accuracy.

Current efforts involve implementing the spatial order
switching scheme in a computationally efficient manner, as
well as quantitatively understanding the critical threshold
value(s) mandating a change in order. Finally, we are
examining the accuracy of the various spatial differencing
approaches for simulating coupled air-rock interface waves,
along plane or non-plane material discontinuity surfaces.
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Figure 2. Vertical particle velocity (Vz) and pressure (P) traces generated by a vertical force (Fz) source located in rock at z =
+10.5 m. Left and right columns correspond to 2"-order and 4™-order spatial differencing applied to velocity and stress
components. All velocity traces are displayed with identical gain, whereas pressure traces recorded in air (z < 0) are amplified by
10,000 compared to pressure traces recorded in rock (z > 0).
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Figure 3. Analogous traces generated by a vertical force source located in air at z=—10.5 m. All pressure traces are displayed
with the same gain, whereas velocity traces recorded in rock are amplified by 10,000 compared to velocity traces recorded in air.
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