SAND2008- 2898C

Application Performance under Different XT Operating Systems

Courtenay T. Vaughan, John P. Van Dyke, and Suzanne
M. Kelly,, Sandia National Laboratories

ABSTRACT: Under the sponsorship of DOE's Office of Science, Sandia has extended
Catamount (XT3/Red Storm’s Light Weight Kernel) to support multiple CPUs per node
on XT systems while Cray has developed Compute Node Linux (CNL) which also
supports multiple CPUs per node. This paper presents results from several applications
run under both operating systems including preliminary results with quad-core

processors.

KEYWORDS: Red Storm, XT3, XT4, catamount, CNL, CNW

1. Background

Since the early 1990’s Sandia National Laboratories
and commercial partners have collaborated to deploy
massively parallel processor (MPP) supercomputers based
on a hardware and software model of node specialization.
These MPP systems have successfully run capability-class
problems, where the entire machine can efficiently run a
single application on all nodes and achieve a high degree
of parallelism.

The most recent collaboration was with Cray, Inc.
and Sandia’s Red Storm system became the basis for
Cray’s XT3, XT4, and XTS5 products. This product line
implements a two-partition hardware and software
architecture. Nodes in the service partition have hardware
support for PCI-based devices and run a full distribution
of the SUSE Linux operating system. On XT3 systems,
the nodes in the compute partition run the Catamount
Light Weight Kernel (LWK) Operating System (OS) [1].
Starting with the XT4, rather than using the Catamount
LWK, the yod job launcher, and the compute processor
allocator, Cray is providing the ALPS runtime software.
The ALPS software is all custom, newly developed
software, with the exception of the compute node
operating system. Cray is using a Linux software base
that has been tuned to minimize jitter and remove/disable
unnecessary services. This version of Linux is called
Compute Node Linux (CNL).

CNL and ALPS, like any new software development
effort, are subject to the usual risks associated with
schedule, stability, and performance. The DOE Office of

Science initiated a risk mitigation project that funded
Sandia to develop a new version of Catamount. The
project was in support of Oak Ridge National
Laboratory’s (ORNL) XT4 system called Jaguar which is
being upgraded to quad-core processors. The immediate
goal was to create an enhanced Catamount to support 4
processors per node, suitable to run on a Cray XT4
computer populated with quad-core AMD Budapest
Opteron processors.

2. Catamount N-Way (CNW)

The UNICOS 1.4 and 1.5 releases provided a version
of Catamount that supported single or dual core AMD
Opteron Processors. This version is called Catamount
Virtual Node (CVN) since each core operates as a virtual
node, supporting a unique MPI rank within a parallel job.
The implementation delivered for the risk mitigation
project was to be N-way (not just 4-way) and be able to
run on single or dual core processors without
recompilation. Although untestable, this OS is believed
to support 8-core Opterons, should they become available.
For this reason, we refer to the latest version as
Catamount N-Way, or CNW. The requirements and
design for CNW are described in [2]. Briefly, the design
is to extend the virtual node concept to every core on a
node.

Besides support for four cores, there were two
additional functional requirements imposed on this
version of Catamount over its predecessor. A second
implementation of the Portals networking software is
provided. The original version performs protocol
processing on the host CPU while the additional one uses

' This research was sponsored by Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

CUG 2008 Proceedings 1 of 5

the processor on the SeaStar network interface chip for
protocol processing. The second new functional
requirement is support for dual-core and quad-core
Opterons in one job. Previous versions of Catamount and
the current version of CNL require that the same number
of processes run on each node in the job.

Although the predecessor to Catamount, called
Cougar, provided an OpenMP implementation, the feature
remains unavailable in all versions of Catamount. As
core counts continue to grow, Catamount could re-
introduce the feature if an all MPI-solution for parallelism
becomes unfeasible. The feature was lightly used in
Cougar since application developers found it difficult to
successfully manage both node-level and thread-level
parallelism.

3. Comparison of CNL and CNW

This section provides a brief overview of the two
operating systems that can run on an XT computer. Since
the purpose of this paper is to present results when the
same applications were run under both OSes, an
understanding of the architecture differences might
illuminate performance variations.

Compute Node Linux and Catamount N-Way have
very different heritages and architectural foundations.
CNL is based on the Linux kernel, which serves primarily
the desktop and server markets. It supports multiple,
concurrent users and multiple, independent processes and
services. It runs on a wide range of processors and
supports a wide range of attached devices. It has large
and dynamic [3] code base. Since it is ubiquitous,
problems are identified and resolved quite quickly. New
software features are added at an astonishing rate.

In contrast, CNW is a limited functionality kernel
intended to run one process (per core) for one user
application/job. Its only device drivers are for console
output and to communicate over the SeaStar Network
Interface Chip using the Portals protocol. It has no
support for virtual memory and memory addressing is
physically contiguous. It supports both 4 KB and 2 MB
pages for user applications. The CNW operating system
contains approximately 20,000 lines of code, primarily
written in the C language. Its goal is to provide the
necessary services for an application to run across every
node in the system. Further, it does not provide
services/features that are known to not scale to the full
size of the machine, such as dynamic process creation,
dynamic libraries, and virtual memory.

4. Results

In this paper, we have collected results from several
machines, including large scale results with dual-core
processors on ORNL’s Jaguar system and Sandia’s Red

Storm system, and various small test systems with four
quad-core processors.

A. Results from Jaguar

We ran several applications of interest to ORNL last
summer on Jaguar, which was then configured as a mix of
dual-core XT3 and XT4 compute nodes. These
applications include the Gyrokinetic Toroidal Code
(GTC) — a 3-d PIC code for magnetic confinement fusion,
the Parallel Ocean Program (POP) — an ocean modeling
code, and VH1 — a multidimensional ideal compressible
hydrodynamics code. The results are shown in Table 1,
with the CNL results coming from ORNL.

CNL 2.0.03+ | CNW 2.0.05+
PGI 6.1.6 PGI6.1.3
GTC
1024 cores XT3 only 595.6 secs 584.0 secs
20000 cores XT3/XT4 | 786.5 secs 778.9 secs
4096 cores XT3 only 614.6 secs 593.8 secs
POP
4800 cores XT3 only 90.6 secs 77.6 secs
20000 cores XT3/XT4 | 98.8 secs 75.2 secs
VH1
1024 cores XT3 only | 22.7 secs 20.9 secs
20000 cores XT3/XT4 | 1186.0 secs 981.7 secs
4096 cores XT3 only 137.1 secs 117.4 secs

Table 1. Early Jaguar results

The times in the table are run times, so lower
numbers represent better performance. These results are
somewhat dated since there have been improvements to
both CNL and CNW since these were run. These results
show an improvement from 1% to 31% for CNW over
CNL.

B. Recent Large Results from Red Storm

This summer Sandia is upgrading part of Red Storm
to quad-core processors. As part of testing CNW for use
after the upgrade, we ran a full machine test to identify
any problems with CNW and to compare CNW to CNL.
Both systems were based on UNICOS 2.0.44 and the tests
were compiled with PGI 6.2.5. We ran a scaling study for
two codes and the results presented here are using only
one core per processor (the current nodes are dual-core).
We ran CTH which is a shock hydrodynamics code with a
shaped charge problem and PARTISN which is a time-
dependent, parallel neutral particle transport code. Both
codes were run in a weak scaling mode with a constant
amount of work per processor. The results are shown in
Figures 1 and 2.

CUG 2008 Proceedings 2 of 5

CTH 7.1 - Shaped Charge (90 x 216 x 90/proc)

18 /\
. 16 - "
[5)
[
L
E,' 14
7]
[]
£
= 12
£
= /// o)
10 7 —— CNL
8 T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Processors
Figure 1. CTH, CNW better at scale
Partisn - sn timing - 24 x 24 x 24/proc
200
150
o
[
)
(]
.§100
=
50
——CNL
0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Processors

Figure 2. PARTISN, CNW shows better scalability

At 8192 processors, CTH is 9.8% faster with CNW
than CNL and PARTISN is 49% faster. The bumps in the
CNW CTH runs are from using the Moab queuing
system. Red Storm has a mix of nodes with 2GB, 3GB,
and 4GB of memory. Moab preferentially uses the 2GB
nodes which are located on one end of the machine and
all along the fifth row, so the jobs can be laid out in a
non-compact form on the mesh. On the other hand, we do
not have a queuing system for CNL and the jobs got laid
out in a compact form. We are not sure why CTH is
showing differences on 1 processor, but the performance
differences between CNL and CNW seem to get larger as
the number of processors increase. This is shown even
more clearly with PARTISN in that the two curves
overlay each other up to 256 processors and then diverge.
CTH tends to send large messages and is more affected by
bandwidth while PARTISN sends more small messages
and is affected by message latency.

We also ran the HPC Challenge (HPCC) benchmark
suite [4] which provides a variety of benchmarks that
span the space of processor and network performance for
parallel computers. These benchmarks include HPL
(factor a large dense matrix) which emphasizes processor
performance, PTRANS (matrix transposition) which tests

network bisection bandwidth, STREAMS (vector
operations) which tests memory performance,
RandomAccess (modify random memory locations across
the entire machine) which stresses small message network
performance, and FFT (a large 1-D Fast Fourier
Transform) which is a coupled processor and network
test. For this test, we did not run HPL and ran optimized
versions of RandomAccess and FFT. We ran version 1.2
of HPCC on 16384 cores (8192 nodes) and the results are
shown in table 2.

Benchmark | units CNL CNW | CNW/CNL
PTRANS GB/s 598.7 | 894.1 1.49
STREAMS | GB/s 24721 | 36499 1.48
Random GUP/s 12.7 234 1.85
FFT GFLOPS | 1963.8 | 2272.2 1.16

Table 2. HPCC on 16384 cores

The numbers in the table are performance
measurements and larger numbers indicate better
performance. Part of the difference between CNL and
CNW for the HPCC tests is due to CNL using small pages
while CNW is using large pages. Most of these tests run
somewhat better with large pages [5], but that does not
explain the whole difference. Benchmarks can tend to be
harder on a system than most application codes, but the
PTRANS and STREAMS benchmarks have similar
performance to PARTISN.

C. Results from Budapest Quad-Core processors

Sandia has a test machine with four quad-core
Budapest nodes, each having 8 GB of memory. The base
operating system for this machine is UNICOS 2.0.44 and
the PGI 6.2.5 compiler was used for all of the tests. We
ran two types of tests on these processors. We ran on 16
cores using all four cores on each node, and we also ran a
series of tests using four cores in different configurations
to explore the utilization of the additional cores on the
processors. By running four cores using four nodes with
one core per node, two nodes with two cores per node,
and all four cores on a node, we are able to see the effect
of the contention between the cores for the memory and
access to the NIC since the amount of communication and
computation is the same for all three cases.

We start by presenting results from running version
1.0 of HPCC in both of these modes. All of the tests are
run from the normal configuration of the benchmark suite
with no optimized tests. The results are shown in Table 3.

Num Cores

MPI Per CNW/
Benchmark Ranks Node CNL CNW CNL
PTRANS GB/s 16 4 1.612 | 2.792 1.73
HPL GFLOPS 16 4 66.55 | 68.02 1.02
STREAMS GB/s 16 4 31.98 | 35.13 1.10

CUG 2008 Proceedings 3 of 5

Random GUP/s 16 4 0.017 | 0.035 | 2.04 SAGE 267.8 234.9 14.0%
FFT GFLOPS 16 4 3.331 | 3.518 1.06 SPPM 847.8 845.0 0.33%
PTRANS GB/s 4 1 0.576 | 1.606 | 2.83 UMT 502.7 472.3 6.44%
HPL GFLOPS 4 1 17.88 | 17.90 1.00
STREAMS GB/s 4 1 2521 25.84 1.02 Table 4. Results on 16 Budapest cores
Random GUP/s 4 1 0.006 | 0.012 1.83) . .
FFT GFLOPS 4 1 1.609 | 1.646 1.02 The average improvement in CNW performance is
PTRANS GB/s 4 2 0.488 1.551 3.18 .about 5% for these applications, which is less than the
HPL GFLOPS 2 3 1778 | 18.03 101 improvement for the HPCC tests on 16 cores.
STREAMS GB/s 4 2 1645 | 18.11 1.10 Cores
Random GUP/s 4 2 0.006 | 0.012 1.88 Per CNL CNW CNW/CNL
FFT GFLOPS 4 2 1.337 1.360 1.02 Application | node (sec) (sec) Improvement
PTRANS GB/s 4 4 0.287 | 1.244 | 433 CTH 1 861.4 816.7 5.47%
HPL GFLOPS 4 4 17.59 | 17.72 1.01 GTC 1 583.1 577.7 0.93%
STREAMS GB/s 4 4 7.85 9.95 1.27 LSMS 1 1160.6 1105.6 4.97%
Random GUP/s 4 4 0.006 | 0.011 1.92 PARTISN 1 175.1 165.5 5.75%
FFT GFLOPS 4 4 0.902 | 0.959 1.06 POP 1 428.0 4255 0.61%
PRONTO 1 175.8 164.2 7.06%
Table 3. HPCC on Quad-Core Processors S3D 1 1327.8 1282.5 3.53%
o
The results here are similar to those obtained for a SAGE ! 170.0 158.9 6'94(?)
larger number of processors on Red Storm. HPL, which SPPM I 294.6 293.1 L) v
ger nu p)

:) UMT 1 1768.8 1701.0 3.99%
was not run before, shows little difference between CNL :
and CNW. Most of the tests show similar differences CTH 2 949.7 877.8 8.19 f'
between CNL and CNW except for PTRANS which GTC 2 592.9 589.5 0.58%
shows more difference when all four cores on a node are LSMS 2 1177.3 1118.6 5.25%
being used. Again, the CNL tests were run using small PARTISN 2 245.5 234.4 4.77%
pages while the CNW tests were run with large pages. POP 2 440.1 435.7 1.01%
However, on the Budapest nodes, the number of TLB PRONTO 2 186.8 175.0 6.74%
entries for large pages is 128 which has been raised from S3D 2 1482.2 1439.7 2.95%

8 on the older dual-core Opteron processors. In other SAGE 2 179.9 165.3 8.85%
tests that we have conducted with these new processors, SPPM 2 297.3 295.2 0.71%
large pages is almost always an advantage, which is UMT 2 1816.2 1760.4 3.17%
generally from about 1% to 3%, where with the old CTH 4 1219.5 1037.8 17.51%
processors, small pages could be an up to 50% advantage. GTC 4 622.8 622.4 0.06%
LSMS 4 1208.1 1144.6 5.55%

We also ran similar tests with ten applications. In PARTISN 4 4471 441.9 1.16%
addition to the applications that we have already POP 4 4673 4643 0.66%
mentioned, we have also run LSMS - an electron PRONTO 4 209.1 195.1 718%
structure code, S3D — a combust}on modeling code, 33D 4 19373 1940 4 20.16%
PRONTO3D — a structured ana1y51s COde, SAGE — a SAGE 4 233.4 190.2 17.47%
hydrodynamics code, SPPM — a benchmark code for 3-D SPPM 2 3011 2078 111%
gas dynamics, and UMT2K — an unstructured mesh UMT 2 1944.6 1827.6 6.40%

radiation transport code. We were unable to run VH1 for
this test. Table 4 shows the results for running on 16
cores (4 nodes using 4 cores per node) and the numbers
are times in seconds.

Application CNL CNW CNW/CNL
(sec) (sec) improvement
CTH 1513.1 1298.2 16.6%
GTC 664.9 670.6 -0.85%
LSMS 290.1 276.7 4.84%
PARTISN 499.3 491.3 1.62%
POP 153.8 151.9 1.22%
PRONTO 241.5 222.0 8.78%
S3D 1949.1 1948.9 0.01%

Table 5. Results on 4 Budapest cores

Table 5 shows the same applications running on
four cores in the same three modes that we ran HPCC. As
with the 16 core case, times are in seconds for the run of
the code. A couple of the codes such as GTC and S3D
have large I/O operations in the test problem that was run
which is timed as part of the run. Other tests that we have
run show that CNL is generally faster with I/O than CNW
and it shows in these results. These results also show that
the average advantage of CNW over CNL goes up with
the use of more cores per node. As with HPCC, part of
the explanation of the difference may be that CNL uses

CUG 2008 Proceedings 4 of 5

small pages while CNW uses large pages. There are also
differences in intra-node message passing such as
differences in locking algorithms.

5. Conclusions and Future Work

Sandia has developed and tested a version of the
Catamount operating system called CNW (Sandia’a
Catamount N-Way) that runs with quad-core processors.
In testing that we have done comparing CNW to
Catamount, we have found no regressions including
regressions in application performance. We have run and
compared several applications under CNL (Compute
Node Linux) and CNW on several machines with
different AMD Opteron processors. In most cases,
applications run somewhat faster running with CNW. On
large numbers of dual-core processors, CNW shows
progressively better performance. On four quad-core
processors, the difference between CNL and CNW varies
with what code is being run. Some of the differences with
the quad-core results can be attributed to the page size
that each operating system uses. File I/O performance
may be another factor. CNL can make use of on-node
buffering whereas 1/0 is entirely synchronous on CNW.
Our testing showed that CNW’s iobuf library can alleviate
some of the disparity, but still cannot achieve the same
/O performance as CNL.

In the future, we will be testing machines with large
numbers of quad-core processors to see if the trends that
we have seen with a large number of processors continue
with quad-core processors and to see if the trends we saw
with four quad-core processors continue on more nodes
and how the two effects combine.

References

1. Suzanne M. Kelly and Ronald B. Brightwell,
“Software Architecture of the Light Weight
Kernel, Catamount,” Cray User Group, May
2005.

2. John P. Van Dyke, Courtenay T. Vaughan and
Suzanne M. Kelly, “Extending Catamount for
%1(1)17ti-C0re Processors,” Cray User Group, May

3. Obed Koren, “A Study of the Linux Kernel
Evolution:, SIGOPS Operating Systems Review,
40(2):110-112, 2006.

4. P. Luszczek, J. Dongarra, D. Koester, R.
Rabensiefner, R. Lucas, J. Kepner, J. McCalpin,
D. Baily, and D. Takahasi, “Introduction to the
HPC challenge benchmark suite,” March 2005,
http://icl.cs.utk.edu/hpcc/pubs/index.html.

5. Courtenay T. Vaughan, “The Effects of System
Options on Code Performance,” Cray User
Group, May 2007.

CUG 2008 Proceedings 5 of 5

http://icl.cs.utk.edu/hpcc/pubs/index.html

