
The BEC Programming Model
Mike Heroux

Sandia National Labs
Albuquerque, NM 87185

Email: maherou@sandia.gov

Zhaofang Wen
Sandia National Labs

Albuquerque, NM 87185
Email: zwen@sandia.gov

Junfeng Wu
Syracuse University

Syracuse, NY 13244-1150
Email: juwu@syr.edu

Abstract—Bundle-Exchange-Compute (BEC) is a program-
ming model supporting PGAS on distributed-memory machines.
The BEC programming abstraction incorporates the spirits of
two famous computation models: PRAM [1], [2] (with random
fine-grained accesses to shared memory) for its expressiveness
of parallelism, and BSP [3], [4] for its efficiency on distributed-
memory machines.

BEC’s global view of shared data structures enables ease of
algorithm design and programming. For good performance, the
BEC model guides the programs to be written in an efficient BSP-
like style. Fine-grained shared data accesses are automatically
and dynamically bundled together for coarse-grained message-
passing. The BEC model allows overlap communication and
computation, and provides ample optimization opportunities for
communication scheduling inside the BEC runtime library.

BEC code can mix with MPI code. Integrating BEC with
MPI is an easy way to add PGAS programming abstraction to
MPI. Integrating BEC with MPI or other PGAS languages can
add built-in capabilities to these models for efficient support of
unstructured applications.

BEC is easy to use with a simple memory model (no race
condition). General users are free from explicit management
of data distribution, locality, communication, synchronization.
Advanced users can specify arbitrary data distribution. Initial
unstructured applications using BEC show that simple BEC
programs can match very complex and highly optimized MPI
codes in performance.

I. INTRODUCTION

Bundle-Exchange-Compute (BEC [5], [6]) 1 is a program-
ming model supporting Partitioned Global Address Space
(PGAS) [7] on distributed-memory machines. The BEC pro-
gramming environment extends ANSI C with shared variables,
and includes a light-weighted runtime library (called BEC Lib)
on top of the message-passing layer (e.g. MPI).

BEC is easy to use with a simple memory model (no
race condition) and a somewhat higher level of programming
abstraction than current PGAS languages. General users are
free from explicit management of data distribution, locality,
communication, synchronization. Advanced users can specify
arbitrary data distribution. Details of the BEC model as well
as its role in relation to MPI and other PGAS languages
are presented later in Section VI. Initial applications using
BEC have shown that very simple BEC code can match
complex and highly tuned MPI code in performance. (These
applications are difficult to implement using other PGAS
languages to achieve compatible performance with MPI.)

1developed at Sandia National Labs in collaboration with Syracuse Univer-
sity

BEC is developed based on (1) in-depth analysis of HPC
applications at Sandia National Labs and their programming
needs, and (2) careful study and comparison of past and
present practical parallel programming models (e.g. Open MP,
MPI, PGAS etc. [8], [9], [7]) as well as theoretical parallel
computation models (e.g. PRAM [2], [1], BSP [3], [4]).

II. GENERAL OVERVIEW OF PARALLEL PROGRAMMING
LANGUAGES AND LIBRARIES

A parallel programming model provides an abstraction for
programmers to express the parallelism in their applications
while simultaneously exploiting the capabilities of the under-
lying hardware architecture. A programming model is typically
implemented in a programming language, or a runtime library,
or both; and the implementation is also referred to as a
programming environment.

For decades researchers and language developers have been
exploring and proposing parallel library and language (PLL)
extensions to support large-scale parallel computing. In the
entire time, MPI has been the only project that can be
called a broad success. PVM [10] and SHMEM [11] have
made an impact on a subset of platforms and applications.
Shared memory parallel models such as POSIX [12] Threads
and OpenMP [8] are also extremely useful, but large-scale
parallelism using threads is limited by a number of factors such
as a lack of computers with large processor counts, problems
with latency and data locality of logically shared data that is
physically distributed and subtle issues such as false cache
line sharing that can make a parallel program slower than
its sequential counterpart. Ironically, the success of Message
Passing Interface (MPI [13]) has made the adoption of true
language extensions and other novel library approaches ex-
tremely difficult across existing parallel applications bases and
with existing parallel application development teams because
there is a high degree of satisfaction with the performance and
availability of MPI and a critical mass of MPI expertise. In
other words, many people think MPI is all they need. Many
good ideas have failed because they have not recognized and
address this attitude. There are still many opportunities to
improve upon MPI, both in usability and performance.

Despite MPI’s success, there are still classes of applications
for which this model is not best suited, for example, parallel
graph algorithms [14]. Furthermore, some studies suggest that
programmer productivity can be higher with other program-
ming models such as PGAS [15], [16], [17]. The DARPA

SAND2008-2751C

HPCS program is in its Phase III (2006-2010) with a focus
on programming models [18]. PGAS is regarded as a key
step towards the HPCS goals. Major parallel machine vendors
have dedicated teams developing their own future models (e.g.
IBM’s X10 [19] and Cray’s Chapel [20]), all to offer PGAS
as a subset. PGAS models can be realized in libraries and
language extensions. Examples of PGAS libraries are MPI-
2 [21], and Cray’s SHMEM [11]. Existing PGAS language
extensions include Unified Parallel C (UPC) [15], Co-Array
Fortran (CAF) [22], and the Java-based Titanium [17].

There is also the question whether the message-passing
model (alone) will be suitable for new architectures in coming
decades. With the overwhelming complexities of the next-
generation parallel systems based on multi-core chips and
heterogeneous architectures, higher level programming ab-
straction with better ease of use will be necessary.

III. TECHNICAL CRITERIA

A practical programming model must balance the often con-
flicting technical factors including application performance
(arguably the most important), ease of use, performance
scalability to increasing number of processors, and portability
to a wide range of architectures and platforms. Some of these
criteria are self-explanatory; while ease of use is discussed in
more details below.

The phrase “ease of use” have had many interpretations,
which can make it confusing and hard to compare and judge
programming models. So it is important to clarify what this
phrase means. Specifically, ease of use should be reflected
in the process of the application program development, as
outlined below.

1) Design parallel algorithms to exploit the inherent par-
allelism in the application problem formulation. Given
a problem, there can be many dramatically different and
“fast” parallel algorithms, based on various high-level
parallel computation models (e.g. SIMD shared mem-
ory fine-grained parallel [1], [2], distributed memory
message-passing coarse-grained parallel [21], [10]).

2) Map (implement) the algorithm(s) onto a specific level of
programming abstraction. There are several fundamental
issues here.

a) Expressiveness of Parallelism: The abstraction
level of the programming interface should al-
low easy and natural expression of parallelism in
the parallel algorithms. Such parallelism may be
coarse-grained or fine-grained, and involve regu-
lar (remote) data access patterns or random data
accesses. For example, MPI programs often need
a support layer, either domain-specific libraries or
user-written functions, in order to implement fine-
grained parallelism with irregular data accesses.

b) More Algorithm Choices: Some of the algorithms
may be readily implementable, or implementable
with minor adjustments; some others may require a
lot of extra support (e.g. another software layer), or
may simply be unsuitable. Therefore, “ease of use”

should also include support for more algorithm
choices.

c) Guidance to Good Program Style: For ease of
use, a programming model should implicitly and
gently guide the mapping of parallel algorithms
into parallel programs with good-style (e.g. BSP
style [3], [4]) that can run efficiently on the target
architecture. This is the so-called easy to do good
programming. In the contrary, easy to do bad
programming means that a programming model
provides the programming convenience (a ”trap”)
that may result in severe performance penalty.
For example, some PGAS language allows random
accesses to elements of shared arrays that actually
are always distributed in fixed regular patterns
across the physical processors. This programming
feature makes it convenient to express parallel
algorithms with irregular shared data accesses.
But such a convenience can potentially lead to
programs with very poor performance; and the
unrestricted fine-grained random accesses to shared
array elements in this programming abstraction has
the risk of producing programs with such arbitrary
styles that are very hard for optimizations in the
compiler and runtime library.

3) Performance Tuning: It may be easier to write a quick
version of a parallel program using a high-level pro-
gramming abstraction than a low level one. But the quick
high-level version may not always provide the desirable
performance. One question for ”ease of use” here is
whether or not the high-level programming abstraction
can be retained in performance tuning. Or does the
high-level abstraction have to be replaced with low-level
abstraction in order to get good performance?
For example, in some PGAS language, the high-level
PGAS abstraction (shared arrays and related constructs)
often has to be abandoned and replaced with low-level
one-sided message passing utilities (e.g. memget() and
memput()) in order to achieve comparable performance
to MPI. Performance tuning often leads to a final pro-
gram of message-passing style. Such cases may indicate
insufficiency in the language’s PGAS abstraction, and
undermines its intended goal for ease of use.

IV. FOCUS

Our research focuses on the fundamental aspects of a pro-
gramming model rather than the software engineering aspects
of an integrated development environment. The fundamental
aspects include easy expression of parallelism (fine-grained
and coarse-grained, structured and unstructured etc.) and ef-
ficient mapping/implementation of the parallelism onto the
machine platforms. The software engineering aspects include,
for example, support for Object-Oriented design and coding,
strong typing etc.

V. TECHNICAL MOTIVATIONS OF THE BEC PROJECT

BEC was motivated by two fundamental and un-addressed
(or under-addressed) needs.

• Built-in efficient support of unstructured applications:
These applications inherently require high-volume, ran-
dom, fine-grained communication (or remote data ac-
cesses). For example, unstructured application include
parallel graph algorithms, sparse-matrix algorithms, and
material physics simulations. Unstructured applications
represent a large percentage of parallel applications at
Sandia National Labs (at least 50% by some estimate).
Furthermore, the theme of the cutting edge research
in scientific computing is about developing stable fast
algorithms and adaptive methods, such as multi-scale
wavelets, kernels, finite volumes, and adaptive finite
elements, all of which ultimately involve large, parallel
solution of unstructured sparse linear systems.

• Smooth migration of legacy MPI applications and their
programmers to the PGAS model: For example, at Sandia
National Labs, legacy MPI applications represent an
on-going multi-billion dollar investment. Serving as the
backbone of Sandia’s critical missions, these applica-
tions can not be abandoned for complete redevelopment;
meanwhile, their developers represent most of the expert
parallel programmers in the field of HPC today. This
means that migration of heavily-invested legacy applica-
tions and their expert programmers, along with the costs
of development and adoption of new models, pose real
challenges to any new programming model effort.

VI. BEC OVERVIEW

BEC is a parallel programming model and environment.
BEC can be used alone. But equally interesting is that BEC
code can mix with MPI code in the same program or even the
same function. Integrating BEC with MPI as an enhancement
can add PGAS capability to MPI as well as built-in capa-
bilities for management (bundling/unbundling) and efficient
scheduling of communication; this should help the smooth
migration from MPI to higher level models. BEC can also
be integrated with existing PGAS language implementations
to provide built-in efficient support for unstructured appli-
cations. (In fact, there has been discussion to do so with
UPC [8].) Furthermore, BEC or the capabilities of BEC) can
potentially serve as building blocks in next-generation parallel
programming languages. Finally, BEC can also function as an
intermediate language [23] to high-level PGAS programming
language constructs [24].

The BEC programming model incorporates the spirits of
two famous parallel computation models: the Parallel Random
Access Model (PRAM, [2], [1]) with shared memory for its ex-
pressiveness of random fine-grained parallelism / algorithms,
and the Bulk Synchronous Parallel (BSP, [3], [4]) model
for its efficiency when implemented on distributed memory
machines. Specifically, BEC’s global view of shared data
structures enables ease of algorithm design and programming.

For good performance, the BEC model guides the programs
to be written in BSP-like style, in which fine-grained shared
data accesses are automatically and dynamically bundled to-
gether (by the runtime library to schedule for) coarse-grained
message-passing.

The BEC model also makes it easy to overlap communi-
cation and computation. The BEC model also provides ample
optimization opportunities for message packing/unpacking and
communication scheduling inside the runtime library; other-
wise such optimizations are often written by individual MPI
programmers in an ad hoc fashion.

BEC is easy to use with a simple memory model (no race
condition). General users are free from explicit management
of data distribution, locality, communication, synchronization.
Advanced users can specify arbitrary data distribution. Initial
experiences show that BEC satisfies all the technical criteria
discussed earlier in Section III.

The strength of BEC is most apparent for unstructured
applications that inherently require high-volume random fine-
grained communication, such as parallel graph algorithms,
sparse-matrix operations, and large scale simulations.

As a parallel programming environment, BEC extends ANSI
C with shared variables to support parallel programming,
and includes a light-weighted runtime library (called BEC
Lib) on top of the message-passing layer (e.g. MPI). The
BEC runtime library API has a small set of functions to
let users program in the Bundle-Exchange-Compute style.
This runtime library can be used alone or together with the
BEC programming language extension. The BEC language
extension is convenient because it allows shared arrays to
be used in regular array syntax, which also allows the BEC
library functions to be used more conveniently. Advanced
users who prefer to use BEC Lib directly with C or C++ may
be able to write even more efficient codes. In either case,
the Application Programming Interface (API) of the BEC
runtime library is fairly simple. A user only needs to know a
few functions. A BEC program typically include one or more
Bundle-Exchange-Compute phases as follows. 2

1) Bundle: accesses to shared data (variables) must be
explicitly requested before they can be used in local
computation. These requests are automatically and dy-
namically aggregated into a bundle object by the BEC
runtime library. Write requests to shared variables can
either be made explicitly by calling BEC runtime library
functions, or implicitly in the BEC language extension
in which case assignment statements to shared variables
are translated into BEC runtime library calls for write
requests. The BEC runtime library offers functions for
both of these purposes. It also provides functions to
create a persistent bundle object for multiple bundle-
exchange-compute phases.

2With advanced compiler support, it is possible to generate the read requests
automatically. A user only needs to insert some “BEC exchange()” calls in
the “right place” in between the computation code.

2) Exchange: a call to function BEC exchange() tells the
BEC runtime library to make sure that the bundles
are exchanged among the physical processors to fulfill
the read and write requests of shared data. This is a
collective operation. Depending on implementation of
the BEC runtime library, the actual exchange (transfer)
of data may occur before BEC exchange() is called.
However, it is only after this call that it is safe to assume
that the requested data are available for computation.

3) Compute: After the exchange, shared data can be used
as if they were local. Actual requests to write shared
variables are made (explicitly or implicitly) in this step.
These requests will be bundled up with the read requests
in the next phase of Bundle-Exchange-Compute.

For example, consider the following code segment.

shared i n t A[1 0 0 0 0] , B[1 0 0 0 0] , C[1 0 0 0 0] ;

BEC reques t (A [3]) ;
BEC reques t (B [8]) ;

/∗ e x p l i c i t l y r e q u e s t A [3] , B [8] ∗ /

BEC exchange () ;

C[1 0] = A[3] +B [8] ;
/∗ Use A [3] , B [8] i n c o m p u t a t i o n and ∗ /
/∗ r e q u e s t t o w r i t e C[10] i m p l i c i t l y . ∗ /

NOTE:
• The BEC exchange step is a collective call. It resolves all

the pending (write and read) requests to shared memory
locations.

• If multiple write requests are made to the same shared
location, predetermined rules of the BEC runtime library
decide which one to succeed.

• When a processor reads a shared location, if there is a
write request by the same processor after the preceding
exchange call, the read operation will get the value of
that write request; otherwise, it will get the value of the
shared location at the end of the preceding exchange call.

VII. APPLICATIONS AND PERFORMANCE

We have implemented several initial applications using
BEC. Three of these applications are presented here for
demonstration. These three applications are

• a simple random access benchmark that is somewhat
similar to the HPC Challenge Global Random Access
benchmark,

• a graph coloring algorithm based on the Largest Degree
First (LDF) heuristic, and

• a sparse linear system solver using the Conjugate Gradi-
ent (CG) method.

The first application is a test, and it is chosen to show
the impact of bundling to application performance vs. no
bundling. Implemented in both BEC and MPI for comparison,
the other two applications show that BEC is significantly
easier to use than MPI while achieving comparable application
performance; and this is because BEC has built-in bundling

capabilities while the MPI programs need to include additional
code for bundling in ad hoc fashions.

A. Summary of Inital Experiences Using BEC

Experiences from implementing these three can be summa-
rized as the following:

1) BEC can support unstructured applications very effi-
ciently (as intended).

2) With a few lines of BEC code automatically invoking its
built-in bundling, it can achieve very good application
performance that would require very complex MPI codes
to match (to our surprise).

3) BEC’s PGAS allows easy algorithm design and ex-
pression of parallelism beyond MPI; and its built-in
dynamic bundling concept provides capabilities for ef-
ficient implementation (a capability not yet available
in existing PGAS languages). This combination can
overcome programming difficulties that prevent many
applications from becoming MPI parallel applications,
because it frees application programmers from system
level details unrelated to their own domain expertise.

Finally,the built-in efficient support for random fine-grained
shared data accesses raises the level of PGAS programming
abstraction, and advances the state of the art. BEC can help
smooth migration from MPI to PGAS programming models.

B. Parallel Machine Used

All performance charts are made according to the
test results collected from the NERSC supercomputer
Franklin (franklin.nersc.gov). Franklin is a Cray XT4
system. More detail about Franklin can be found at
http://www.nersc.gov/nusers/resources/franklin/.

C. Global Random Access

The test here is to show the importance of message bundling
to application performance when compared to no-bundling.
This test is similar to the HPCS GUPS benchmark [25]; but
there are some differences, which will be discussed later in
this section.

Specifically, the problem involves a shared array X[N], dis-
tributed equally over these P processors, with each processor
holding a contiguous section of N/P items. For the test, each
processor to update the shared array for M rounds. In each
round, every processor randomly selects N/P items of the
shared array to update.
Algorithm:

f o r (round = 0 ; round < M; round ++) {
f o r (i = 0 ; i < N / P ; i ++) {

i n d e x = random () % N;
v a l u e = random () ;
X[i n d e x] = v a l u e ;

}
}

The first chart in Figure 1 shows the rates of random
accesses by various models, in terms of Giga Bytes Per
Second, on various numbers of processors. The second chart

Fig. 1. Performance of Random Access

in Figure 1 shows the scaling of these rates relative to the
number of processors. In these charts, for example, the curve
labeled “mpi 256” represents the performance of the MPI
implementation that allows bundling up to 256 items. This
number is also called lookahead size in the HPCC Global-
Random-Access benchmark.

As shown in Figure 1, the BEC program scales better than
the other two programs. The scaling of the MPI program
depends on the lookahead size. Increasing the lookahead size
improves the granularity of the communication of the MPI
program, thus improves its performance and scaling. This
further demonstrates the importance of bundling. With MPI,
such bundling requires substantial extra coding efforts in the
users’ part; while with BEC, bundling is implicit and automatic
with no extra coding effort.

The HPCC Random Access benchmarks are measured in
term of Giga Updates Per Second (GUPS). These benchmarks
are used for the ranking of supercomputers for the their abil-
ities to support applications that require random or irregular
data accesses.

Although the GUPS benchmark has been used mainly to
test the hardware platform, a real application is developed
on a machine platform comprising hardware and system
software (including programming environment); so it would
be meaningful (even more so for both practical reason and
for the reaching the DARPA goal) to test the GUPS on the
programming environment on which the real application is
developed. In this context, we choose to relax the restriction
of the size of the look-ahead for two reasons: (i) in real appli-

cation development, the message-queues used by programmers
are much less restrictive; and (ii) more importantly, BEC has
built-in message-bundling capabilities that are automated and
basically requires no effort on the programmers’ part to handle
random accesses, regardless of the sizes of the message-
bundles.

D. Graph Coloring Algorithm Based on the Largest Degree
First Heuristic

Graph algorithms have many applications in high perfor-
mance parallel computing, especially in optimizations , sim-
ulations, and even the parallelization of traditional numerical
methods such as Gauss-Seidel iterative method. For example,
graph coloring is used in the parallel Gauss-Seidel method.

For our applications here, we choose the vertex coloring,
which is to assign colors to vertices in a graph such that no two
adjacent vertices share the same color. The specific algorithm
is based on a heuristic called Largest Degree First (LDF) as
described below.
Input: G — the graph with n vertices v 1, v 2, . . . , v n
Output: c(v 1), c(v 2), . . . c(v n) — the assigned colors
Algorithm:

Randomly a s s i g n w e ig h t t o e v e r y v e r t e x on
t h i s p r o c e s s o r ;

whi le (t h e r e a r e u n c o l o r e d v e r t i c e s i n G) {
f o r each u n c o l o r e d v e r t e x on t h i s

p r o c e s s o r {
mark t h e v e r t e x as a c a n d i d a t e ;

f o r each u n c o l o r e d n e i g h b o r o f t h i s
v e r t e x {

i f (t h e d e g r e e o f n e i g h b o r > t h e
d e g r e e o f t h i s v e r t e x) {

unmark t h e v e r t e x ;
break ;

}
i f (t h e d e g r e e o f n e i g h b o r == t h e

d e g r e e o f t h i s v e r t e x && t h e
we ig h t o f n e i g h b o r > t h e we ig h t
o f t h i s v e r t e x) {

unmark t h e v e r t e x ;
break ;

}
}

i f (t h e v e r t e x i s s t i l l marked) {
i t e r a t e t h r o u g h i t s u n c o l o r e d
n e i g h b o r s t o f i n d o u t t h e s m a l l e s t
p o s s i b l e c o l o r ;
a s s i g n t h i s s m a l l e s t p o s s i b l e c o l o r
t o t h e v e r t e x ;

}
}

f o r each p i c k e d v e r t e x v i {
c (v i) = s m a l l e s t p o s s i b l e c o l o r ;

}
}

Note that accessing the neighbors (traversing the edges) for
each uncolored vertex typically cause irregular (and potentially
remote) data accesses. Without bundling, these data accesses

will cause high-volume random fine-grained communication.
As shown in the random access test discussed earlier, this
kind of communication can significantly hurt application per-
formance on distributed memory machine platforms.

Fig. 2. Performance of Graph Coloring

The first chart in Figure 2 shows the parallel execution time
of both BEC and MPI implementations of the graph coloring
algorithm. The second chart in Figure 2 shows the performance
scaling of the BEC and MPI implementations relative to the
number of parallel processors. The three different curves for
BEC as well as those for MPI represent the performance
of the programs on data sets of three different sizes (small,
medium, and large). The small data set contains 5 million
vertices and about 80 million edges, the median one contains
10 million vertices and about 16 million edges, while the large
one contains 20 million vertices and about 32 million edges.

As shown in Figure 2, the performance of the BEC and the
MPI implementations are comparable. The BEC implementa-
tion started out a little bit slower on low processor count. This
is because the runtime support of the shared variables incurs
some overheads in BEC, while the MPI implementation is
distributed and therefore without these overheads (the draw
back is the need for much more codes). As the processor
count increases, the BEC implementation catches up relative
to the MPI implementation. This is because the BEC runtime
library’s built-in data structures (such as hash tables) are
specially optimized for larger processor count, while the MPI
implementation uses general purpose hash tables from the C++
Standard Template Library (STL), which is not optimized in
this way. In Figure 2, BEC seems to scale better as the number

of processors increases, for two possible reasons: (1) The BEC
implementation started out slower. (2) as the processor count
increases, the highly-optimized and specialized hash tables
inside BEC Lib provides better performance than the general
purpose hash tables of the STL used by the MPI program;
and such performance advantage well compensates for BEC
Lib’s overheads visible at low processor count. The BEC and
MPI implementations have similar performance scaling trend
for the same input data set.

task BEC lines MPI lines
communication 10 69
(bundling included)
computation 58 61
whole program 131 201

TABLE I
CODE SIZES OF THE GRAPH COLORING PROGRAMS

Table I shows the comparison of the BEC and MPI im-
plementations in terms of code sizes in various parts of the
graph coloring kernel. The ratio of code size for bundling and
exchange to the code size for computation is about 0.17 for
BEC, and more than 1 for MPI. The reasons for the simpler
BEC code are as follows.

• The BEC user only needs to write a few lines of
code to request the shared data regardless of their
physical locations. Its built-in bundling and associated
hashing are invoked automatically and implicitly. The
requested data becomes available after a single call to
the BEC exchange() function.

• The MPI user, in contrast, has to write code for creating
message queues, ad hoc data packing and unpacking, and
hashing data for their repeated use in computation.

It is worth pointing out that if the MPI program does not use
the C++ STL for its hashing capabilities, the MPI user will
have to write additional code to implement the hash tables,
which not only is non-trivial to do for most users, but also
can significantly increase the already larger code size of the
MPI implementation.

E. Sparse Linear System Solver Using the Conjugate Gradient
Method

This application is a linear system solver using the Con-
jugate Gradient (CG) method on an arbitrary number of
processors. The linear system solved in this program is from
the diffusion problem on 3D chimney domain by a 27 point
implicit finite difference scheme with unstructured data for-
mats and communication patterns. The sparse-matrix vector
multiplication in this CG method is described below.
Input:

x — the shared array for the input vector
A — the sparse matrix

Output:
y — the shared array for the output vector

Algorithm:

f o r each y [i] on t h i s p r o c e s s o r {
y [i] = 0 ;
f o r each nonze ro A[i] [j] {

y [i] += A[i] [j] ∗ x [j] ;
}

}

An MPI program is used for the comparison to the BEC
CG program. This MPI program was written by Mike Heroux,
and used as a micro application for research in many areas for
several years at Sandia. Both the BEC and the MPI codes are
highly tuned, and both solve the problem in two parts:

1) Bundle preparations (setting up message queues, pack-
ing and unpacking data, localizing matrix, etc), and

2) CG iterations (until convergence).
The performance comparison is shown in Figure 3. We use

notation “BEC 64 64 512” to represent the performance of
BEC on a 3D chimney domain (64h, 64h, 512h), where “h”
is lattice size in space (similarly for MPI). For this case, The
sparse matrix involved in the algorithm is (64*64*512) rows
by (64*64*512) columns. Similar notation is also applied to
the MPI program.

As shown in Figure 3, the BEC and MPI have compatible
performance. The better speedup of BEC than MPI is partly
due to the fact that BEC started out slower than MPI. Theo-
retically, we do not expect the BEC version to run faster than
the MPI version; but we see the BEC version to be slightly
faster in some cases, for the following possible reasons:

• The MPI code uses a hashing capability from the C++
STL, which may be suboptimal for this specific need.
In contrast, the built-in hash table in BEC lib is well
optimized. However, if the MPI version is to write a
customized optimal hash table, it can further add to
its code complexity.

• In the CG iteration (computation) part, the MPI code
uses blocking MPI “send/receive”; while the BEC run-
time library internally uses non-blocking “send/receive”
followed by “wait”.

These performance comparison results are similar to those of
the graph coloring application, except that the CG programs
are affected less by the communication overheads here. It is
possibly because of the better communication pattern of CG
application than the graph coloring application.

The code-size comparison is shown in Table II. Empty
lines, comment lines, debugging code lines and # lines are
not counted. The reason for why the BEC program is simpler
than the MPI program in this CG application is similar to that
in the graph coloring application.

task BEC lines MPI lines
bundle preparation 6 240
CG iterations 60 87
communication 11 277
whole program 233 733

TABLE II
CODE SIZES OF THE CG PROGRAMS

Fig. 3. Performance of Conjugate Gradient

VIII. CONCLUSION

We have presented the BEC programming model. This
model satisfies all the technical criteria described in Section
III, especially good application performance and ease of good
programming.

We have also presented results from some BEC applications.
Initial experiences from these BEC applications are summa-
rized below.

1) BEC can support unstructured applications very effi-
ciently (as intended).

2) With a few lines of BEC code automatically invoking its
built-in bundling, it can achieve very good application
performance that would require very complex MPI codes
to match (to our surprise).

3) BEC’s virtual shared memory allows easy algorithm
design and expression of parallelism beyond MPI; and
its built-in dynamic bundling concept provides capabil-
ities for efficient implementation. This combination can
overcome programming difficulties that prevent many
applications from becoming MPI parallel applications,
because it frees application programmers from system
level details unrelated to their domain expertise.

Although BEC can be used alone, BEC can be integrated
with MPI as enhancement to add built-in PGAS programma-

bility and built-in communication bundling and efficient
scheduling capabilities to support unstructured applications.
BEC can also be integrated with other PGAS languages such
as UPC to provide built-in efficient support for unstructured
applications. Such added capability integrations bring MPI and
the PGAS model closer, and can facilitate smooth transitions
of MPI applications and programmers to the PGAS model.

Finally, the high-level programming abstraction of BEC
free the users from the usual parallel programming difficulties
(as endured by MPI programmers) in explicit management
of data distribution, data locality, communication scheduling,
and synchronization. With the overwhelming complexities of
the next-generation parallel machines based on clusters of
nodes with multi-core chips (with multiple levels of memory)
and heterogeneous architectures, a high level programming
abstraction that can free users from the usual parallel pro-
gramming difficulties will become necessary in order for most
programmers to make good use of the machines.

ACKNOWLEDGEMENT

This research was sponsored by Sandia National Laborato-
ries, Albuquerque, New Mexico 87185 and Livermore, Cal-
ifornia 94550. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Secu-
rity Administration under Contract DE-AC04-94-AL85000.

This research used resources of the National Energy Re-
search Scientific Computing Center at Lawrence Berkeley
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098.

Jonathan Brown, Shan Shan Huang, Sue Goudy and Yuesh-
eng Xu made many contributions to the research efforts that
led to the BEC programming environment. Ron Brightwell
helped a lot in seeking funding support for this research.
Weicai Ye did a lot of work in data collection, test case
preparation, and information gathering. We would like to
express our appreciation to Bill Camp for his constructive
criticism, encouragement, and support for our programming
model research. Many thanks to Danny Rintoul for supporting
the BEC research through CSRI DT. We would like to thank
Neil Pundit for his helpful coaching, and Jim Ang for his
enthusiastic support for this research. Many thanks to David
Womble for providing student funding through CSRI. Ron
Brightwell and Bruce Hendrickson pointed out some related
references. Many thanks also to Rolf Riesen, Kevin Petretti,
Mike Glass, Kevin Brown, Courtenay Vaughan, Bruce Hen-
drickson, Steve Plimpton, Doug Doerfler, Brice Fisher, David
Burnholdt, Maya Gokhale, and Ron Oldfield.

The BEC model was inspired by the PRAM model [10]
and algorithms research of 1980s- 1990s, the BSP model
[13], and also more recent work in Global Address Space.
We would like to acknowledge the leaders for their contri-
butions. These notably include Uzi Vishkin, Leslie Valiant,
Bill Carlson, Kathy Yelick, and Bob Numrich. In particular,
we gratefully acknowledge Uzi Vishkin and Bill Carlson for

their encouragement. Thanks also to the UPC Consortium and,
in particular, Lauren Smith, Tarek El-Ghazawi, Phil Merkey,
Steve Seidel, and Dan Bonachea.

REFERENCES

[1] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-
memory machines. MIT Press, Cambridge, MA, 1991, pp. 869 – 941.

[2] L. Stockmeyer and U. Vishkin, “Simulation of parallel random access
machines by circuits,” SIAM J. Computing, vol. 13, no. 2, pp. 409–422,
1984.

[3] L. G. Valiant, “A bridging model for parallel computation,” Comm. ACM,
August 1990.

[4] J. Hill, “The Oxford BSP Toolset (url),” www.bsp-
worldwide.org/implmnts/oxtool/.

[5] BEC home page, http://www.cs.sandia.gov/BEC/.
[6] Z. Wen, J. Wu, and Y. Xu, “BEC specification and programming

reference,” Sandia National Laboratories, Albuquerque, NM, Tech. Rep.
SAND2007-7617, 2007.

[7] R. B. Brightwell and Z. Wen, “Advanced parallel programming models
research and development opportunities,” Sandia National Laboratories,
Tech. Rep. SAND2004-3485, 2004.

[8] O. A. R. B. (url), “OpenMP fortran application interface version 1.1,”
www.openmp.org.

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT Press,
1999.

[10] A. Geist et al., “PVM home page,” 2005,
www.csm.ornl.gov/pvm/pvm home.html.

[11] NPACI, “SHMEM tutorial page,” 2005,
www.npaci.edu/T3E/shmem.html.

[12] T. O. G. (url), “POSIX home page,” 2005,
www.opengroup.org/certification/posix-home.html.

[13] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-
The Complete Reference, Volume 1, The MPI core. The MIT Press,
1998.

[14] B. Hendrickson, “Combinatorial scientific computing: The role of
discrete algorithms in computational science and engineering,” 2003,
plenary talk at 2nd SIAM Conf. Computational Science & Engineering
CSE’03.

[15] U. Consortium, “UPC language specification (v 1.2),”
http://www.gwu.edu/ upc/documentation.html.

[16] C.-A. F. W. G. (url), “Co-Array FORTRAN home page,” 2005, www.co-
array.org.

[17] K. Y. et. al, “Titanium, a high-performance Java dialect,” Concurrency:
Practice and Experience, vol. 10, pp. 825–836, 1998.

[18] R. Graybill, “High productivity language systems - the path forward
(keynote),” in Proceedings of the PGAS Programming Models Confer-
ence, Minneapolis, MN, September 2005.

[19] IBM, “The X10 Programming Language,”
http://domino.research.ibm.com/comm/research projects.nsf/pages/x10.index.html.

[20] C. (url), “Chapel — The Cascade High-Productivity Language,”
http://chapel.cs.washington.edu/.

[21] M. (url), “MPI-2: Extensions to the Message-Passing Interface,”
www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[22] C. home page, “www.co-array.org.”
[23] S. Goudy, S. S. Huang, and Z. Wen, “Translating a high level PGAS

program into the intermediate language BEC,” Sandia National Labora-
tories, Tech. Rep. SAND2006-0422, 2006.

[24] J. L. Brown and Z. Wen, “PRAM C: A new parallel programming
environment for fine-grained and coarse-grained parallelism,” Sandia
National Laboratories, Tech. Rep. SAND2004-6171, 2004.

[25] HPC Challenge, “Random Access Rules,”
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

