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S
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E
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S
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T
h
e

C
a
se

fo
r

U
n
ce

rta
in

ty
Q

u
a
n
tifi

ca
tio

n

•
U

Q
is

needed
for

:

•
validation

of
scientifi

c
m

odels

•
validation

of
predictive

codes

•
engineering

design
optim

ization

•
assessm

ent
of

confi
dence

in
com

putational
predictions

•
enabling

decision-m
aking

strategies
based

on
predictive

m
odels

•
assim

ilation
of

observational
data

and
m

odel
construc-

tion
in

noisy
environm

ents

•
m

ultiscale/m
ultiphysics

m
odeling

H
N

N
-S

N
L

N
C

0
8

-
2



S
o
u
rce

s
o
f
U

n
ce

rta
in

ty

•
m

odel
structure

•
participating

physical
processes

•
governing

equations

•
constitutive

relations

•
m

odel
param

eters

•
transp

ort
prop

erties

•
therm

odynam
ic

prop
erties

•
constitutive

relations

•
rate

coeffi
cients

•
initial

and
b
oundary

conditions

•
geom

etry

F
o
cu

s
o
n

p
ara

m
e
tric

U
Q

H
N

N
-S

N
L

N
C

0
8

-
3



E
le

m
e
n
ts

o
f
a

U
Q

stra
te

g
y

•
E
stim

ation
of

m
odel/param

etric
uncertainties

based
on

data

•
D

eterm
inistic

fram
ew

ork

•
R
egresssion

analysis,
fi
tting,

param
eter

estim
ation

•
P
robabilistic

fram
ew

ork

•
B
ayesian

inference
of

uncertain
m

odels/param
eters

•
F
orw

ard
propagation

ofuncertainty
in

com
putationalm

odels

•
D

eterm
inistic

fram
ew

ork

•
L
ocal

S
ensitivity

analysis
(S

A
);

E
rror

propagation
•

Interval
m

ath

•
P
robabilistic

fram
ew

ork
–

G
lobal

S
A

/
stochastic

U
Q

•
S
am

pling
based

—
non-intrusive

•
D

irect
—

intrusive

H
N

N
-S

N
L

N
C

0
8

-
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S
to

ch
a
stic

F
ra

m
e
w
o
rk

•
L
aplacian/B

ayesian
conception

of
probability

•
P
robability

≡
degree

of
know

ledge

•
U

ncertain
quantity

≡
random

variable

•
C
ontrast

w
ith

F
requentist

fram
ew

ork

•
Inference

w
ith

B
ayes

theorem

p(m
|d

)p(d
)

=
p(d|m

)p(m
)

A
form

al
fram

ew
ork

for

•
representation

of
know

ledge

•
learning

from
data

•
incorp

oration
of

prior
know

ledge

•
construction

of
uncertain

m
odels

•
avoidance

of
overfi

tting

•
handling

nuisance
param

eters

H
N

N
-S

N
L

N
C

0
8

-
5



R
o
le

o
f
B
aye

s
F
o
rm

u
la

in
P
ara

m
e
te

r
In

fe
re

n
ce

•
B
ayes

F
orm

ula:

p(λ
,y

)
=

p(λ
|y

)p(y
)

=
p(y
|λ

)p(λ
)

or:

p(λ
|y

)
︸

︷
︷

︸

P
osterior

=

L
ikelih

ood
︷

︸
︸

︷

p(y
|λ

)

P
rior

︷
︸
︸
︷

p(λ
)

p(y
)

︸
︷
︷
︸

E
vid

en
ce

•
Infer

P
D

F
of

λ
rather

than
the

least-squares
estim

ate
of

λ

•
P
osterior

contains
allinform

ation
ab

out
λ

(prior
info

+
data)

•
P
rior

encapsulates
all

prior
inform

ation

•
L
ikelihood

function:
fi
t

m
odel

and
m

easurem
ent

noise

•
E
vidence

is
a

norm
alizing

constant
–

ignore
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B
aye

sia
n

In
fe

re
n
ce

o
f
U

n
ce

rta
in

R
a
te

C
o
e
ffi

cie
n
ts

C
H

4
+

2O
2
→

C
O

2
+

2H
2 O

R
=

[C
H

4 ]
[O

2 ] 2
k
(T

)

k
(T

)
=

A
T

n
e
−

E
/R

oT

P
resum

e
a

[C
H

4 ]
observable:

I
(T

,t)
=

e
−

[O
2 ] 2k

(T
)t

w
here

[O
2 ]

is
∼

constant
for

trace
[C

H
4 ]

1e-09
1e-08

1e-07
1e-06

1e-05
tim

e (sec)

0

0.2

0.4

0.6

0.8 1

1.2

Normalized Observable

P
resum

e
noisy

I
(T

,t)
exp

onential
decay

data
generated

using
A

=
9.0e23,

n
=

0,
E

=
5.0e4

w
ith

added
G
aussian

noise

Infer
P
D

F
s

for
A

and
E

using
B
ayesian

inference

H
N

N
-S

N
L

N
C

0
8

-
7



M
arg

in
a
l
P
D

F
s

fo
r

A
a
n
d

E

55.12
55.13

55.14
55.15

55.16
55.17

ln A

0 20 40 60 80

Probability Density

10.816
10.818

10.82
10.822

ln E

0

200

400

600

800

Probability Density

M
arginalp

osterior
P
D

F
s

for
ln

A
and

ln
E

,
evaluated

using
M

arkov
C
hain

M
onte

C
arlo

(M
C
M

C
)

H
N

N
-S

N
L

N
C

0
8

-
8



J
o
in

t
P
D

F
o
f

A
a
n
d

E

•
E
vidence

of
very

strong
correlation

•
N

atural
result

of
fi
tting

the
A
rrhenius

expression

•
A

single
stochastic

degree
of

freedom
(dim

ension)
can

m
odel

uncertainty
in

b
oth

variables

•
C
orrelation

needs
to

b
e

built
into

the
forw

ard
U

Q
problem

H
N

N
-S

N
L

N
C

0
8

-
9



S
p
e
ctra

l
S
to

ch
a
stic

U
Q

F
o
rm

u
la

tio
n

—
P
o
lyn

o
m

ia
l
C
h
a
o
s

•
A
n

L
2

random
variable

u
(x

,t,θ)
can

b
e

describ
ed

by
a

P
olynom

ial
C
haos

(P
C
)

expansion
in

term
s

of:

•
H

erm
ite

p
olynom

ials
Ψ

k ,
k

=
1,...,∞

;

•
the

associated
infi

nite-dim
ensionalG

aussian
basis

{ξ
i (θ)}

∞i=
1 ;

•
sp

ectral
m

ode
strengths

u
k (x

,t),
k

=
1,...,∞

.

•
T
runcated

to
fi
nite

dim
ension

n
and

order
p,the

P
C

expansion
for

u
is

w
ritten

as

u
(x

,t,θ)
'

P∑k
=

0

u
k (x

,t)Ψ
k (ξ(θ))

w
here

ξ (θ)
=
{ξ

1 (θ),···
,ξ

n
(θ)}.

H
N

N
-S

N
L

N
C

0
8

-
1
0



N
o
n
-in

tru
sive

–
S
a
m

p
lin

g
-B

a
se

d
–

S
p
e
ctra

l
P
ro

je
ctio

n
(N

IS
P
)

U
Q

•
E
xpress

uncertain
m

odel
param

eters/output
as

P
C

expansions

•
S
am

ple
param

eter
distributions

•
C
om

pute
realizations

of
the

m
odel

output
u

•
P
roject

on
the

P
C

m
ode

strengths
of

m
odel

output

u
k

=
〈u

Ψ
k 〉

〈Ψ
2k

〉
=

1
〈Ψ

2k

〉

∫

u
Ψ

k (ξ)ρ
(ξ)d

ξ,
k

=
0,...,P

–
E
valuate

integrals
num

erically
(M

C
,
quadrature,

cubature)

•
C
onstruct

uncertain
m

odel
output

u
(x

,t;θ)
=

P∑k
=

0

u
k (x

,t)Ψ
k (ξ(θ))

H
N

N
-S

N
L

N
C

0
8

-
1
1



In
tru

sive
S
p
e
ctra

l
S
to

ch
a
stic

U
Q

F
o
rm

u
la

tio
n
:

O
D

E
E
xa

m
p
le

•
S
am

ple
O

D
E

w
ith

param
eter

λ
:

d
ud
t

=
λ
u

•
L
et

λ
b
e

uncertain;
introduce

ξ
∼
N

(0,1).
E
xpress

λ
and

u
using

P
C
E
s

in
ξ:

λ
=

P∑k
=

0

λ
k Ψ

k ,
u

=

P∑k
=

0

u
k Ψ

k

•
S
ubstitute

in
O

D
E

and
apply

a
G
alerkin

projection
on

Ψ
i (ξ),

d
u

i

d
t

=

P∑p=
0

P∑q=
0

λ
p u

q C
pqi ,

i
=

0,...,P

w
here

the
C

pqi
=

〈Ψ
p Ψ

q Ψ
i 〉

/
〈Ψ

2i

〉
are

know
n

coeffi
cients

H
N

N
-S

N
L

N
C

0
8

-
1
2



P
se

u
d
o
-S

p
e
ctra

l
Im

p
le

m
e
n
ta

tio
n

S
p
ectral

P
roduct

:
w

=
u
v

w
=

u
∗

v
⇒

w
i
=
〈u

v〉i ,
i

=
0,···

,P

P
suedo-sp

ectral
higher-order

p
olynom

ial
term

s
:

w
=

λ
u

2v
⇒

w
=

λ
∗

(u
∗

(u
∗

v
))

D
ivision

:

w
=

uv
⇒

〈v
w
〉k

=
u

k ,
solve

lin
ear

equ
ation

system
for

w
k

A
rbitrary

functions
u

=
f
(x

)
w

here
u̇

=
d
fd
x

is
a

rational
function

of
x

&
u

:

u
k (x

b )
−

u
k (x

a )
=

P∑j=
0

∫
(x

b )j

(x
a )j

P∑i=
0

C
ijk (u̇

)i d
x

j

H
N

N
-S

N
L

N
C

0
8

-
1
3



S
p
e
ctra

l
U

Q
F
o
rm

u
la

tio
n
:

lo
w

M
2
D

R
e
a
ctin

g
F
lo

w
E
q
u
a
tio

n
s

∂
ρ

q

∂
t

+
∇
·〈ρ

v
〉
q

=
0

∂
〈ρ

v
〉
q

∂
t

+
∇
·〈ρ

v
v
〉
q

=
−
∇

p
q
+

1R
e ∇

·

〈

µ
[(∇

v
)
+

(∇
v
)
T
]−

23
µ
(∇

·
v
)U

〉q

∂
T

q

∂
t

+
〈v
·∇

T
〉
q

=

〈
(γ
−

1)

γ
ρ
c
p

d
p

o

d
t

〉q

+
1

R
eP

r

〈
∇
·(λ

∇
T

)

ρ
c
p

〉q

−
1

R
eS

c

〈
N

∑i=
1

c
p,i

c
p
V

i ·∇
T

〉

q

−
D

a

〈

1ρ
c
p

N
∑i=

1

h
i w

i 〉

q

∂
〈ρ

Y
i 〉

q

∂
t

+
∇
·〈ρ

v
Y

i 〉
q

=
−

1

R
eS

c ∇
·〈ρ

Y
i V

i 〉
q
+

D
a
〈w

i 〉
q

i
=

1,...,N

•
T

im
e

Integration:

–
O

p
erator-S

plit
reaction-diff

usion
integration

of
(P

+
1)(N

+
1)

sp
ecies

and
energy

eqns

–
S
tochastic

P
rojection

M
ethod

integration
of

(P
+

1)
m

om
entum

equations

H
N

N
-S

N
L

N
C

0
8

-
1
4



U
Q

in
co

n
sta

n
t-p

re
ssu

re
ig

n
itio

n

N
-sp

ecies,
w

ith
m

ass
fractions

Y
i :

d
Y

i

d
t

=
w

i

ρ
,

i
=

1,···
,N

d
Td
t

=
w

T

ρ
c
p

w
ith

w
T

=
−

∑
Ni=

1
h

i w
i
and

w
i
=

∑
Mk
=

1
ν
ik R

k

E
xam

ple:
C
H

4
+

2O
2
→

C
O

2
+

2H
2 O

S
toichiom

etric
coeffi

cients
:

ν
ik

=
{1,2,1,2}

R
eaction

rate
of

progress
:

R
k

=
[C

H
4 ][O

2 ] 2
A

k T
n

ke
−

E
k /T

H
N

N
-S

N
L

N
C

0
8

-
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L
arg

e
a
ctiva

tio
n

e
n
e
rg

y
(E

k )
e
xp

o
n
e
n
tia

ls
le

a
d

to
ve

ry
fa

st
ch

a
n
g
e
s

in
sp

e
cie

s
co

n
ce

n
tra

tio
n
s

a
n
d

te
m

p
e
ra

tu
re

•
M

ethane-air
ignition

—
G
lobalsingle-step

irreversible
m

echanism

•
Initial

T
=

800K

•
S
toichiom

etric

•
p

=
1

atm
(constant)

•
W

H
P
C

fails
at

realistic
E

w
ith

even
m

iniscule
uncertainty

10
−

16
10

−
14

10
−

12
10

−
10

10
−

8
10

−
6

10
−

4
10

−
2

10
0

10
2

tim
e (sec)

500

1000

1500

2000

2500

3000

Mean Temperature (K)

E
=

0−
50K

H
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N
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N
L

N
C

0
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-
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E
x
p
e
rie

n
ce

w
ith

In
sta

b
ilitie

s
a
n
d

In
tru

siv
e

P
C

U
Q

•
R
egions

of
explosive

m
ode

grow
th

can
lead

to
instabilities.

•
F
ast

grow
th

of
high-order

m
odes,

and
fast

drift
of

the
solution

tow
ards

unphysical
values

•
S
tandard

deviation
increases

signifi
cantly,

b
ecom

ing
a

sizeable
fraction

of
the

m
ean.

•
Increasing

P
C

order
does

not
help

•
N

B
.
all

w
ith

fi
xed

P
C

dim
ension

1.0e−
05

2.0e−
05

3.0e−
05

t (s)

0.0e+
00

5.0e−
14

1.0e−
13

1.5e−
13

2.0e−
13

|ck|

σ

c
0

R
ea

g
a
n
,
N

a
jm

,
D

eb
u
ssch

ere,
L
e

M
â
ıtre,

K
n
io

,
a
n
d

G
h
a
n
em

,
C
T

M
,
2
0
0
4
;

H
N

N
-S

N
L

N
C

0
8

-
1
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C
h
a
lle

n
g
e
s

w
ith

th
e

u
se

o
f
a

G
lo

b
a
l
P
C

B
a
sis

fo
r
In

tru
sive

U
Q

•
G
lobalP

C
expansion

w
ith

N
-th

order
p
olynom

ialw
illhave

N
roots/zero-crossings

in
general

•
R
epresenting

a
R
V

w
ith

a
global

P
C

expansion
(over

all
ξ)

•
w

ith
fi
xed

dim
ensionality

and
order

•
w

ill
’sam

ple’
b
oth

p
ositive

and
negative

u
-realizations

•
irresp

ective
of

P
D

F
(u

)

•
F
ails

w
hen

strict
p
ositivity

is
necessary

for
stability

•
e.g.

reaction
rate

constants,
concentrations,

tem
p

•
P
ossible

rem
edies

w
ith

appropriate
fi
ltering

strategies

•
E
vallocallow

order
basis

vs.
the

globalhigh
order

approach

•
W

avelets,
M

ulti-W
avelet,

M
ulti-R

esolution
A
nalysis

H
N

N
-S

N
L

N
C

0
8

-
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U
n
ce

rta
in

ty
Q

u
a
n
tifi

ca
tio

n
w

ith
M

u
ltiw

a
ve

le
ts

•
A
n

uncertain
fi
eld

quantity
u
(x

,t,θ)
is

expressed
using

P
C

u
=

P∑k
=

0

u
k (x

,t)Ψ
k (ξ

1 ,...,ξ
N

),
ξ
i
∼

N
(0,1)

•
Introduce

ζ
i
=

p(ξ
i ):

C
D

F
of

ξ
i ,

w
here

ζ
i
∼

U
(0,1)

u
=

g
(ξ

1 ,...,ξ
N

)
=

f
(ζ

1 ,...,ζ
N

)

•
R
epresent

f
(ζ

)
using

N
-D

m
ultiw

avelets
(A

lp
ert,

1993)

u
=

Q∑λ
=

0

ũ
λ (x

,t)
W

λ (ζ
1 ,...,ζ

N
)

L
e

M
â
ıtre

,
G

h
a
n
e
m

,
K

n
io

,
a
n
d

N
a
jm

,
J
.
C
o
m

p
.

P
h
y
s
.,

1
9
7
:2

8
-5

7
(2

0
0
4
)

L
e

M
â
ıtre

,
N

a
jm

,
G

h
a
n
e
m

,
a
n
d

K
n
io

,
J
.
C
o
m

p
.

P
h
y
s
.,

1
9
7
:5

0
2
-5

3
1

(2
0
0
4
)

H
N

N
-S

N
L

N
C

0
8

-
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M
u
ltid

im
e
n
sio

n
a
l
M

u
ltiw

a
ve

le
t

C
o
n
stru

ctio
n

•
W

iener-H
aar

P
C

able
to

represent
uncertainty

in
system

s
ex-

hibiting
bifurcations

dep
ending

on
param

eter
values

•
P
oor

convergence
relative

to
P
C

constructions
w

ith
sm

ooth
global

bases
on

sm
ooth

functions

•
U

se
m

ultiw
avelet

construction
(A

lp
ert,1993)

em
ploying

higher
order

p
olynom

ials
instead

of
the

H
aar-functions

•
F
or

effi
cient

m
ultidim

ensional
construction,

use

•
B
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