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The Case for Uncertainty Quantification

e UQ is needed for :

e validation of scientific models

e validation of predictive codes

e engineering design optimization

e assessment of confidence in computational predictions

e enabling decision-making strategies based on predictive
models

e assimilation of observational data and model construc-
tion in noisy environments

e multiscale/multiphysics modeling
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Sources of Uncertainty

e model structure

e participating physical processes
e governing equations
e constitutive relations

e model parameters

e transport properties

e thermodynamic properties
e constitutive relations

e rate coefficients

e initial and boundary conditions

® geometry

Focus on parametric UQ
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Elements of a UQ strategy

e Estimation of model /parametric uncertainties based on data

e Deterministic framework
Regresssion analysis, fitting, parameter estimation
e Probabilistic framework

Bayesian inference of uncertain models/parameters

e Forward propagation of uncertainty in computational models

e Deterministic framework
Local Sensitivity analysis (SA); Error propagation
Interval math

e Probabilistic framework — Global SA / stochastic UQ
Sampling based — non-intrusive

Direct — intrusive

HNN-SNL

NCO8 - 4



Stochastic Framework

e Laplacian/Bayesian conception of probability

e Probability = degree of knowledge
e Uncertain quantity = random variable
e Contrast with Frequentist framework

e Inference with Bayes theorem

p(ml|d)p(d) = p(d|m)p(m)
A formal framework for

e representation of knowledge

e learning from data

e incorporation of prior knowledge
e construction of uncertain models
e avoidance of overfitting

e handling nuisance parameters
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Role of Bayes Formula in Parameter Inference

e Bayes Formula:

PN\ y) = p(A\y)p(y) = p(y|A)p(A)

or.
_\ Likelihood Prior
Posterior @
Evidence

e Infer PDF of A rather than the least-squares estimate of \
e Posterior contains all information about A (prior info + data)
e Prior encapsulates all prior information

e Likelihood function: fit model and measurement noise

e Evidence is a normalizing constant — ignore
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Bayesian Inference of Uncertain Rate Coefficients

CHy + 209 — COy + 2H50
R = [CHY] [02]* k(T')
k(T)= AT e E/RT

Presume a [CHy4] observable:

Normalized Observable
o o =
(@] oo = .N,

I
N

I(T,t) = e~k (T}t

o
N

where [O9] is ~ constant b ot S——
1e-09 1e-08 1le-07 1le-06 1le-05

for trace [CHyJ time (s0)

Presume noisy (7T, t) exponential decay data generated using
A =9.0e23, n=0, £ =5.0e4 with added Gaussian noise

Infer PDFs for A and £ using Bayesian inference
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Marginal PDFs for A and F
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Marginal posterior PDFs for In A and In £/, evaluated using Markov
Chain Monte Carlo (MCMC)
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Joint PDF of A and F

e Evidence of very strong
correlation

e Natural result of fitting
the Arrhenius expression

e A single stochastic degree
of freedom (dimension)
can model uncertainty in
both variables

e Correlation needs to be
built into the forward UQ
problem
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Spectral Stochastic UQ Formulation — Polynomial Chaos

e An Ly random variable u(x,t,6) can be described by
a Polynomial Chaos (PC) expansion in terms of:

e Hermite polynomials V., k£ =1,..., o0;

e the associated infinite-dimensional Gaussian basis {&;(0) }5°;

e spectral mode strengths up(x,t), k=1,...,00.

e Truncated to finite dimension n and order p, the PC expansion
for u is written as

P
u(@,t,0) ~ Y ug(e, )Vg(£(0))
k=0
where £(0) = {£1(0), -+ ,&n(0)}-
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Non-intrusive — Sampling-Based — Spectral Projection (NISP) UQ

e Express uncertain model parameters/output as PC expansions
e Sample parameter distributions
e Compute realizations of the model output u

e Project on the PC mode strengths of model output

Uj = % = Ae|wv uli(€)p€)ds, k=0,...,P
k k

— Evaluate integrals numerically (MC, quadrature, cubature)

e Construct uncertain model output

P
(@, t:0) = ug(z, 1) UE(E(6))
k=0
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Intrusive Spectral Stochastic UQ Formulation: ODE Example

e Sample ODE with parameter A:

du
Y
a

e Let \ be uncertain; introduce £ ~ N(0, 1).
Express A and u using PCEs in &:

P P
A= M y\aé\? U = Mﬁ\a@\a
k=0 k=0

e Substitute in ODE and m_u_u_< a Galerkin projection on W, (),

gs MUMUy%@ i 0=0,...,P

p=0 g=0

where the C),,; = AQ@GQG&V / Aéwv are known coefficients

pqr
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Pseudo-Spectral Implementation

Spectral Product : w = uv

w=uxv = w;= (w);, 1=0,---,P

Psuedo-spectral higher-order polynomial terms :

w=v = w=\x(ux*(u*v)

Division :
U . .
w=— = (vw), =1u, solve linear equation system for wy,
v
Arbitrary functions u = f(x) where 1 = ﬁ is a rational function
of x & u

Q\AA&SIQ\AA&@ — \ MQﬁw Q&u
(Ta); —0
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Spectral UQ Formulation: low M 2D Reacting Flow Equations

dpq _
) erﬂ.Abdv@ = 0
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e Time Integration:

— Operator-Split reaction-diffusion integration of (P + 1)(N + 1) species and energy eqns

— Stochastic Projection Method integration of (P + 1) momentum equations
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UQ in constant-pressure ignition

N-species, with mass fractions Y;:

Wi _wio N
dt 0
dT’ B wr
dt PCp
with wp = — MUMMH hyw; and w; = MURH Vit Ry
Example: CH4 + 209 — CO9 + 2H50
Stoichiometric coefficients : v =1{1,2,1,2}
Reaction rate of progress R = [CH4][O9]? AT e Er/T
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Large activation energy (F£)) exponentials lead to very fast changes
in species concentrations and temperature

e Methane-air ignition — Global single-step irreversible mechanism
o Initial 7' = SO0 K 3000

e Stoichiometric - E=0-50K —
2500 - i
e p = 1 atm (constant) o
. <)
e WH PC fails at 5 2000 - |
o
realistic £/ with 2
even miniscule © 1500 - ]
g
=

uncertainty
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Experience with Instabilities and Intrusive PC UQ

e Regions of explosive mode growth
can lead to instabilities.

e Fast growth of high-order modes, .., .,

and fast drift of the solution
towards unphysical values T 10e-13

e Standard deviation increases
significantly, becoming a sizeable
fraction of the mean.

2.0e-13

5.0e-14

0.0e+00 ¢

1.0e-05

e Increasing PC order does not help
e NB. all with fixed PC dimension

Reagan, Najm, Debusschere, Le Mattre,

HNN-SNL

Knio, and Ghanem, CTM, 2004
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Challenges with the use of a Global PC Basis for Intrusive UQ

e Global PC expansion with /N-th order polynomial will have N
roots/zero-crossings in general

e Representing a RV with a global PC expansion (over all &)

e with fixed dimensionality and order
e will 'sample’ both positive and negative u-realizations
e irrespective of PDF(u)

e Fails when strict positivity is necessary for stability
e e.g. reaction rate constants, concentrations, temp

e Possible remedies with appropriate filtering strategies

e Eval local low order basis vs. the global high order approach

e Wavelets, Multi-Wavelet, Multi-Resolution Analysis
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Uncertainty Quantification with Multiwavelets

e An uncertain field quantity u(x,t,0) is expressed using PC

P
u= Y u(x V&, ... &), &~ N(0,1)

k=0
e Introduce (; = p(&;): CDF of &;, where (; ~ U(0,1)

u=g(&,. -, EN) = f(G, -, V)
e Represent f(¢) using N-D multiwavelets (Alpert, 1993)

@
u =S an ) WA(CL - ()

A=0

Le Maitre, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)
Le Maitre, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)
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Multidimensional Multiwavelet Construction

e Wiener-Haar PC able to represent uncertainty in systems ex-
hibiting bifurcations depending on parameter values

e Poor convergence relative to PC constructions with smooth
global bases on smooth functions

e Use multiwavelet construction (Alpert, 1993) employing higher
order polynomials instead of the Haar-functions

e For efficient multidimensional construction, use

e Block-decomposition of the stochastic space
e A local MW construction on each block employing

Scaled Legendre polynomials
First level Multiwavelet details

e Adaptive resolution in each dimension on each block
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Using MW PC for homogeneous Methane-Air ignition

M, = 95.16, 0, ,=0.005 Mg = 10.82, o, =0.0005
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e Global methane air

e Uncertain (A, F/) with perfect correlation
—In A: p=1n(9.0e23), o = 0.005
—In E: p=In(5.0ed), o = 0.0005
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Using MW PC for homogeneous Methane-Air ignition

e Constant pressure
—1 atm
e Deterministic I1C

— Stoichiometric
— T, =800 K
o 41" Order MW PC
e Adaptive time stepping

— Each step:
call DVODE with
internal implicit Adams

time integrator
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Time evolution of Temperature PDFs in preheat stage
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e Similar results from MC (20K samples) and MW computations
e Increased uncertainty, and long high-T" PDF tails, in time
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Time evolution of Temperature PDFs during fast ignition transient
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e [ransition from unimodal to bimodal PDFs

e "|Leakage” of probability mass from pre-heat PDF high—1" tail
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Adaptively refined block decomposition in

1D stochastic space

e Low/high (A, E) values
ignite earlier/later in time
e Block decomposition

refinement proceeds to
higher ¢ values in time

e Refinement retains
specifled maximum degree
of uncertainty per block

HNN-SNL
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Computational Challenges with intrusive MW PC for ignition
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e Reformulated MW PC ODE system:

— Fast active time scales : O(1) ns

— Outer DVODE time step : O(1) us

— Time span during which fast time scales are active: O(10) ms
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Conclusions

e Intrusive Spectral UQ in reacting flow

e Global basis OK for weakly non-linear systems

e Adaptive multiwavelet construction

HNN-SNL

Resolves many global PC difficulties

Robust time integration for high activation energy
and large parametric uncertainty still requires sig-
nificant time integration customization
Demonstration in exothermic ignition illustrates com-
putational challenges with the observation of long
time periods during which fast time scales are active
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