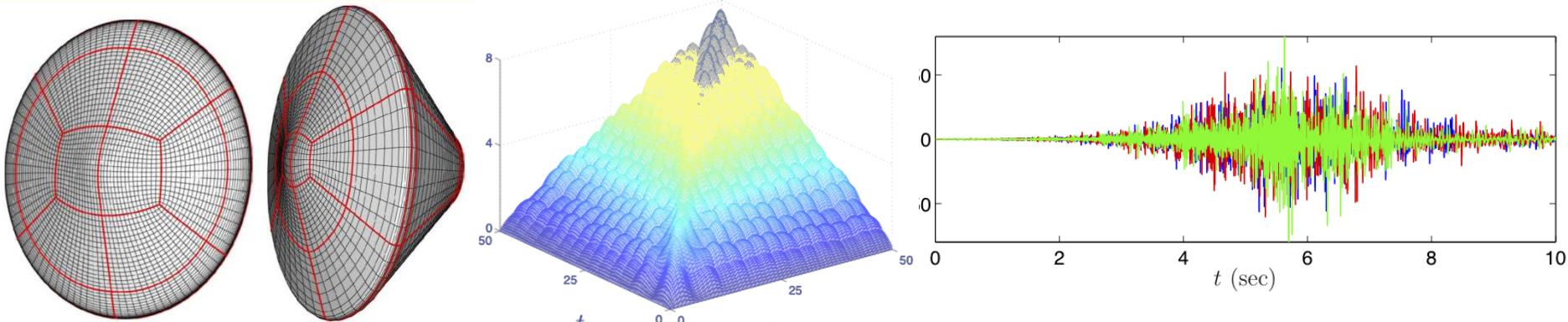


Exceptional service in the national interest



On-the-Fly Generation of Samples of non-Stationary Gaussian Processes

R. V. Field, Jr.

Sandia National Laboratories, USA

M. Grigoriu

Cornell University, USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-xxxxP.

Introduction & Motivation

- Objective: Develop new method for generating samples of non-stationary Gaussian processes
- Target application: Random vibration due to long-time transient excitations
 - Transportation environments, e.g., spacecraft atmospheric entry
- Some popular methods for generating samples of non-stationary Gaussian processes include
 - Oscillatory processes
 - Cholesky decompositions
 - Karhunen-Loève representations
 - Fourier series representations with Gaussian coefficients
 - Generalized version of the spectral representation theorem
 - Filtered Gaussian processes

Introduction & Motivation (cont.)

- However, these approaches typically require that we
 - Calculate entire load history
 - **Store to file** (can be huge for problems of interest)
 - Input into FEA
- Proposed approach: “On-the-fly” sample generation
 - Given value of the load at time t , compute load at time $t + \Delta t$
 - Based on (1) Shannon’s sampling theorem; and (2) Conditional Gaussian random variables
 - Was developed for stationary processes*; herein we provide an extension to non-stationary processes
 - Efficient square-root-like decomposition of a sequence of covariance matrices (not covered)

Outline

- Shannon sampling theorem
 - Review for deterministic functions
 - Discuss truncation and aliasing errors
- Sampling theorem for Gaussian processes
 - Definition
 - Properties
 - Focus is on non-stationary processes
- Monte Carlo simulation
 - Algorithm
- Applications
 - Two academic examples
 - Engineering example: Spacecraft planetary entry

Shannon Sampling Theorem

Let $x(t)$ be a real-valued function with frequency content contained in $(-\nu_c, \nu_c)$, $0 < \nu_c < \infty$. The sequence of approximations

$$x_n(t) = \sum_{|k| \leq n} x(k t_c) \alpha(t - k t_c), \quad t \in \mathbb{R}, \quad n = 1, 2, \dots$$

where $\alpha(t) = \frac{\sin(\nu_c t)}{\nu_c t}$, $t_c = \frac{\pi}{\nu_c}$

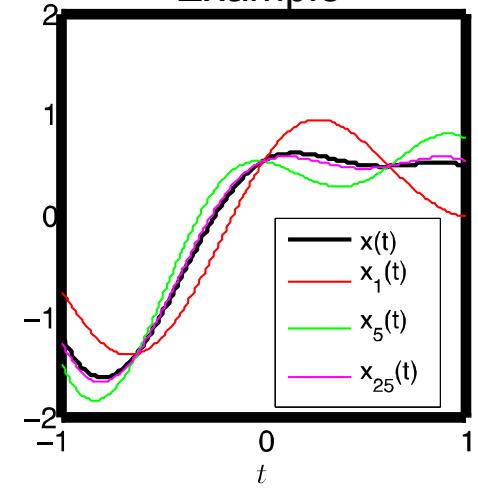
converges to $x(t)$ as $n \rightarrow \infty$ at each $t \in \mathbb{R}$.

- Truncation error

$$|x(t) - x_n(t)| \leq \frac{|\sin(\nu_c t)|}{\pi \nu_c} \left[\left(\frac{1}{n t_c + t} \sum_{k=-\infty}^{-(n+1)} x(k t_c)^2 \right)^{1/2} + \left(\frac{1}{n t_c - t} \sum_{k=n+1}^{\infty} x(k t_c)^2 \right)^{1/2} \right]$$

- Decreases with increasing n

Example



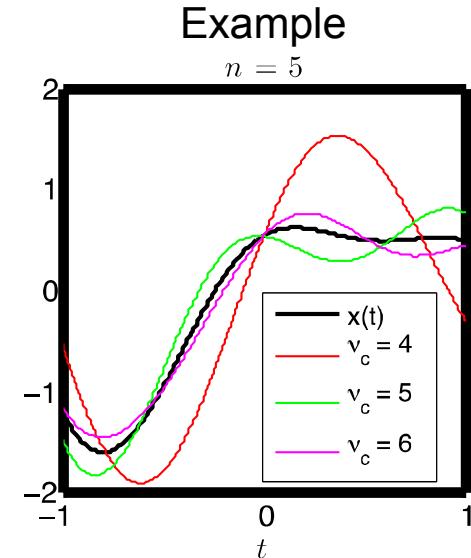
Shannon Sampling Theorem (cont.)

■ Aliasing error

Let $\bar{\nu} < \nu_c$ be the sampling frequency, and let $\bar{x}_n(t)$ be $x_n(t)$ with $\bar{t} = \pi/\bar{\nu}$ in place of t_c . Aliasing occurs because $\bar{x}_\infty(t) = \lim_{n \rightarrow \infty} \bar{x}_n(t)$ does not coincide with $x(t)$. Let $x_F(\nu)$ be the Fourier transform of $x(t)$, then

$$|x(t) - x_\infty(t)| \leq \frac{1}{\pi} \int_{|\nu| > \bar{\nu}} |x_F(\nu)| d\nu$$

- Decreases with increasing sampling frequency $\bar{\nu}$



Application to Gaussian Processes

- Let $X(t), -\infty < t < \infty$ be a Gaussian process with zero mean
 - Global approximation for $X(t)$

$$X_n(t) = \sum_{|k| \leq n} X(k t_c) \alpha(t - k t_c), \quad t \in \mathbb{R}, \quad n = 1, 2, \dots,$$

- Local approximation for $X(t)$

$$\tilde{X}_n(t) = \sum_{k=n_t-n}^{n_t+n+1} X(k t_c) \alpha(t - k t_c), \quad t \in [n_t t_c, (n_t + 1) t_c], \quad n_t = \lfloor t/t_c \rfloor$$

- Properties of the approximations
 - $\lim_{n \rightarrow \infty} \mathbb{E}[(X(t) - X_n(t))^2] = 0$ at any time t
 - X_n converges almost surely (a.s.) to X as $n \rightarrow \infty$
 - X_n becomes a version of X as n increases

** These properties also hold for \tilde{X}_n **
- Bounds on truncation and aliasing errors similar to those for deterministic functions can be constructed

Focus on non-Stationary Processes

- Let $X(t), -\infty < t < \infty$, be a Gaussian process with zero mean, covariance function $c(s, t) = \text{E}[X(s) X(t)]$, and generalized spectral density

$$s(\nu, \eta) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} c(s, t) e^{-i(\nu s - \eta t)} ds dt$$

- $s(\nu, \eta)$ is complex-valued even for real-valued processes and satisfies $s(\nu, \eta)^* = s(\eta, \nu)$, $\forall \nu, \eta \in \mathbb{R}$
- We say X is “bandlimited if $s(\nu, \eta) = 0$, $(\nu, \eta) \in D^c$, where $D = [-\nu_c, \nu_c] \times [-\nu_c, \nu_c]$ and $0 < \nu_c < \infty$ is a constant
- If X is a weakly stationary process with zero mean and spectral density s_0 , its generalized spectral density is $s(\nu, \eta) = s_0\left(\frac{\nu+\eta}{2}\right) \delta(\nu - \eta)$

Some Properties

- Bandlimited non-stationary processes

The m.s. difference between $X(t)$ and its approximation $X_n(t)$ is such that

$$\lim_{n \rightarrow \infty} \mathbb{E} \left[\left(X(t) - X_n(t) \right)^2 \right] = 0$$

- Non-bandlimited non-stationary processes

If $s(\nu, \eta)$ is square integrable, that is, if $\int_{\mathbb{R}^2} |s(\nu, \eta)|^2 d\nu d\eta < \infty$, then

$$\lim_{n \rightarrow \infty} \mathbb{E} \left[(X(t) - X_n(t))^2 \right] \leq 4 \int_{D^c} |s(\nu, \eta)|^2 d\nu d\eta$$

- These properties demonstrate that the Sampling Theorem can be used to approximate non-stationary Gaussian processes

** These properties also hold for \tilde{X}_n **

Monte Carlo Simulation

- Three-step procedure to produce samples of $\tilde{X}_n(t)$, the local approximation for $X(t)$, a non-stationary Gaussian process with zero mean, on $[0, \tau]$

1. Select cutoff frequency ν_c and half window-width n that defines $\{X(k t_c)\}$, $k = n_t - n, \dots, n_t + n + 1$
2. Generate independent samples of $\mathbb{R}^{2(n+1)}$ -valued Gaussian random variable $\{X(k t_c)\}$, $k = 1, \dots, 2(n+1)$ using classical algorithms; use them to calculate samples of $\tilde{X}_n(t)$ in cells $[0, t_c], \dots, [(n+1)t_c, (n+2)t_c]$
3. Extend the samples in the time interval $[0, (n+2)t_c]$ to the subsequent time interval by using properties of conditional Gaussian variables

Repeat step 3 until moving window contains endtime τ

Applications

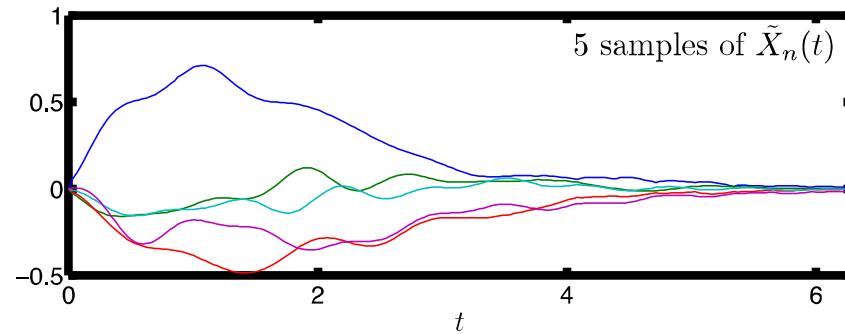
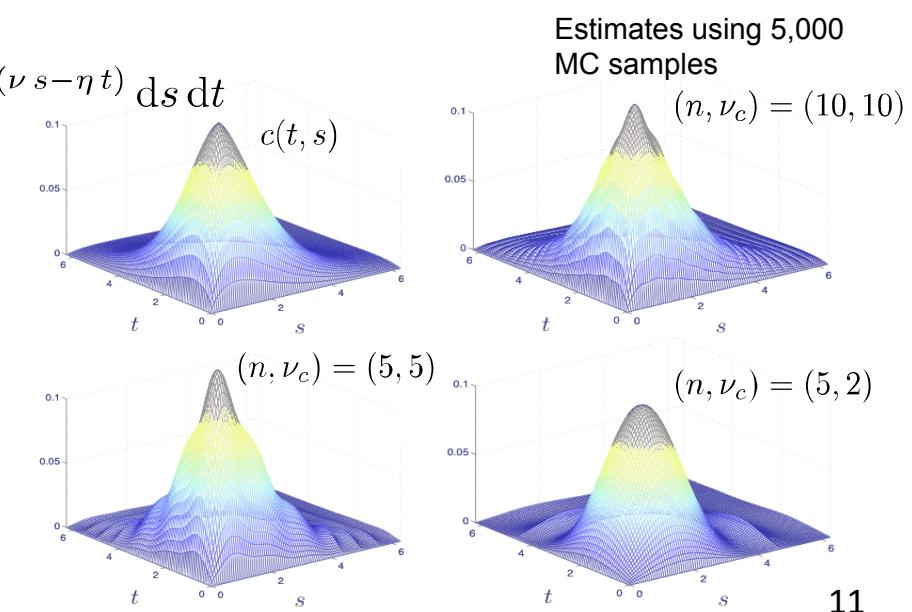
- Example 1: Uniformly modulated process

Let $Y(t)$, $t \in \mathbb{R}$, be a stationary Gaussian process with zero mean and covariance function $c_Y(\tau) = \mathbb{E}[Y(t + \tau) Y(t)] = \exp(-\lambda |\tau|)$, $\lambda > 0$, $\tau \in \mathbb{R}$. Then

$$X(t) = \beta(t) Y(t), \quad t \in \mathbb{R},$$

is a non-stationary Gaussian process with zero mean, covariance function $c(s, t) = \mathbb{E}[X(s) X(t)] = \beta(s) \beta(t) c_Y(s - t)$, and generalized spectral density

$$s(\nu, \eta) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \beta(s) \beta(t) e^{-\lambda |s-t|} e^{-i(\nu s - \eta t)} ds dt$$



Applications

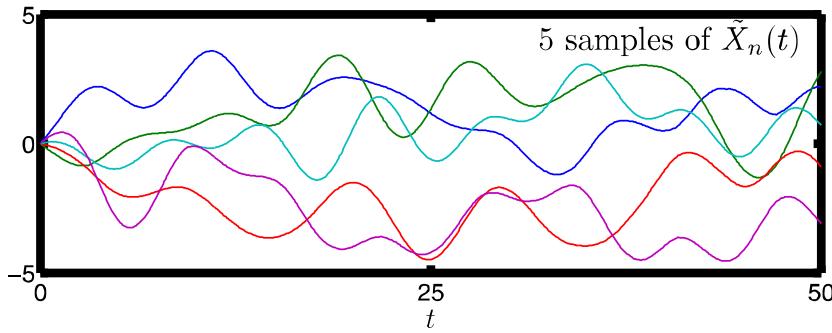
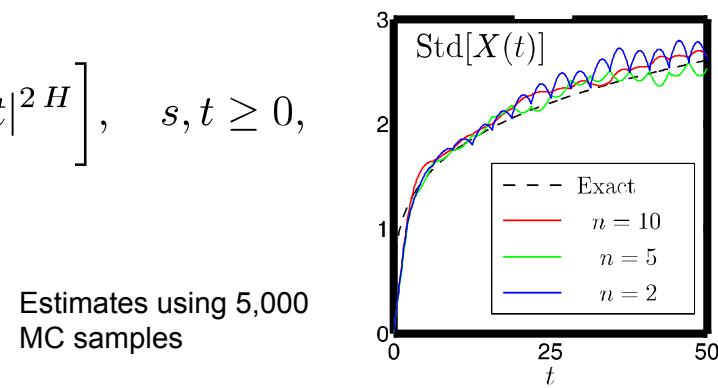
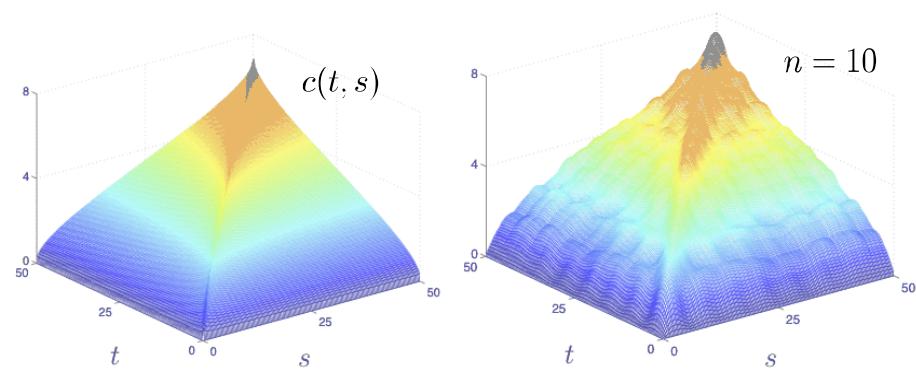
- Example 2: Fractional Brownian motion

Let $H \in (0, 1)$ be a constant and let $B_H(t)$, $t \geq 0$, be a fractional Brownian motion, that is, a non-stationary Gaussian process with zero mean, covariance function

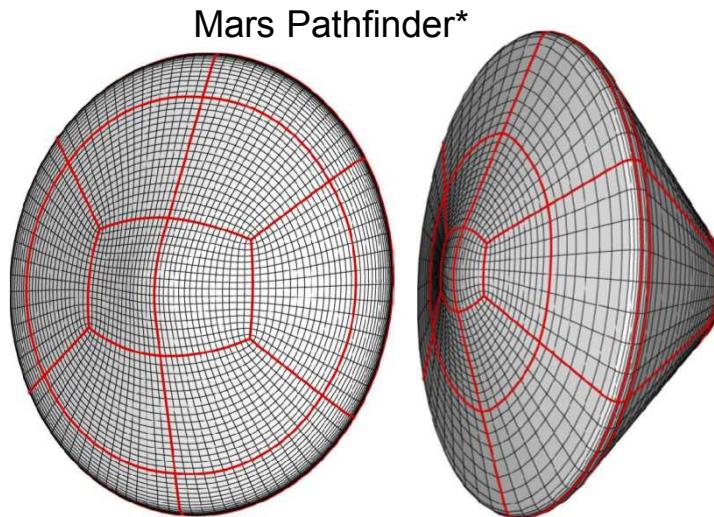
$$c_H(s, t) = \mathbb{E}[B_H(s) B_H(t)] = \frac{1}{2} \left[s^{2H} + t^{2H} - |s - t|^{2H} \right], \quad s, t \geq 0,$$

and initial state $B_H(0) = 0$. Define

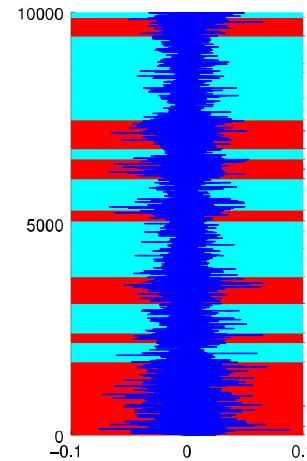
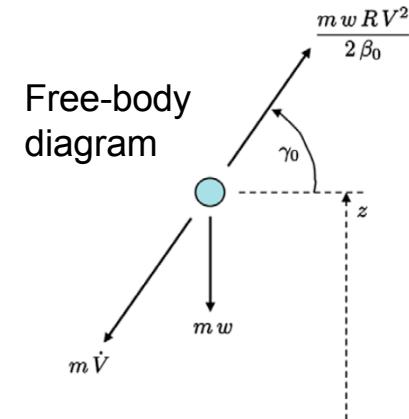
$$X(t) = \mathbf{1}(0 \leq t \leq \tau) B_H(t), \quad 0 < \tau < \infty$$



Application – Spacecraft Atmospheric Entry



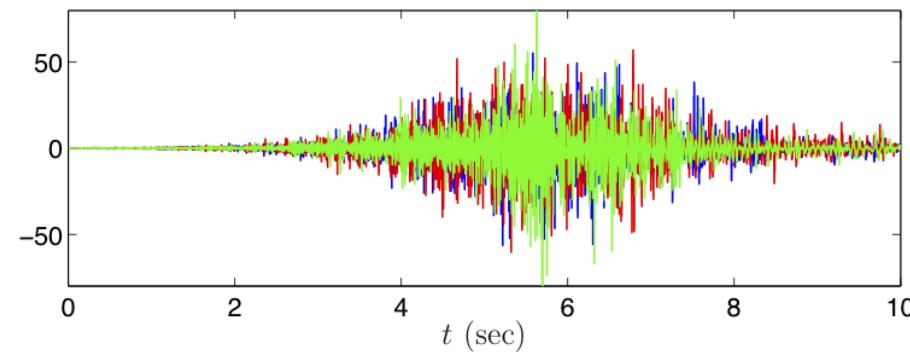
One atmospheric variable vs. altitude



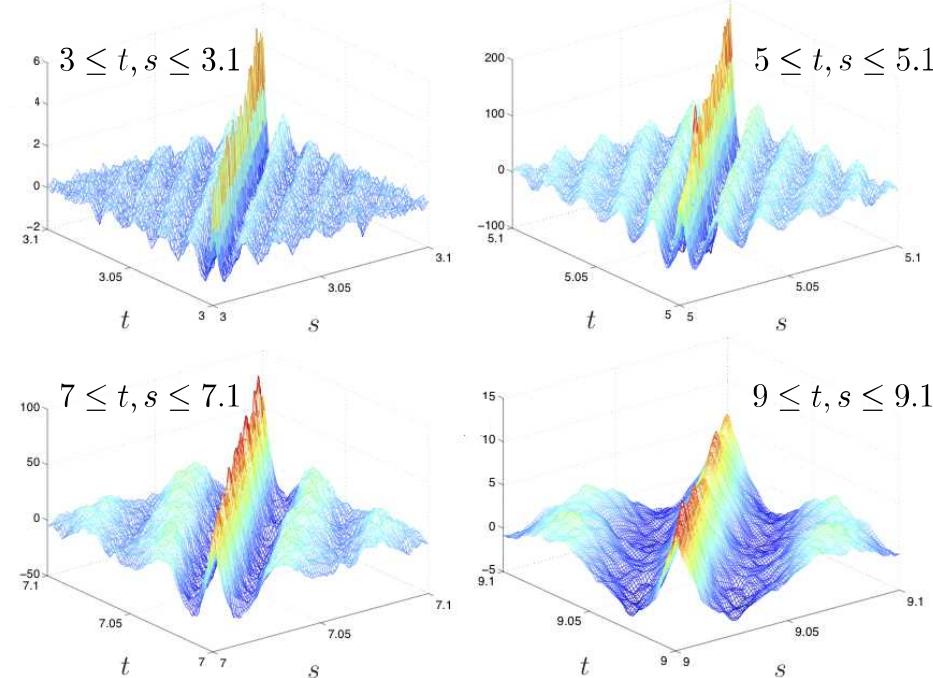
- Objective: Predict vibration response of spacecraft to random fluctuations in atmospheric conditions during planetary entry
 - Random process of atmospheric variables with altitude
 - Mapped to applied force on spacecraft via 6dof trajectory analysis
- Analysis
 - High-fidelity finite element model for spacecraft
 - Applied force is a non-stationary stochastic process (aerodynamic drag)
 - Perfect candidate for proposed on-the-fly method

Application – Spacecraft Atmospheric Entry

*500 samples of (stochastic) drag force, $X(t)$



Estimates of covariance function $c(t,s)$ over various time segments



■ Procedure

1. Compute 500 samples of $X(t)$, the stochastic drag force*
2. Estimate covariance function of $X(t)$
3. Utilize on-the-fly method within FE solver to compute structural vibration response

Summary

- Objective was to develop new algorithm for generating samples of non-stationary Gaussian processes
 - Applications involving long-time transient events
 - Avoid the need to store entire load history to file
 - Instead realize the load “on-the-fly”
- Proposed method was based on sampling theorem for stationary processes, extended to non-stationary processes
 - Developed bounds on truncation and aliasing errors
 - Efficient square-root-like decomposition of a sequence of covariance matrices
- Applications
 - Simple examples