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Introduction & Motivation ) e,

= QObjective: Develop new method for generating samples of
non-stationary Gaussian processes

= Target application: Random vibration due to long-time
transient excitations

* Transportation environments, e.g., spacecraft atmospheric entry

= Some popular methods for generating samples of non-
stationary Gaussian processes include

Oscillatory processes

Cholesky decompositions

Karhunen-Loeve representations

Fourier series representations with Gaussian coefficients
Generalized version of the spectral representation theorem
Filtered Gaussian processes



Introduction & Motivation (cont.) @

= However, these approaches typically require that we
= Calculate entire load history

= Store to file (can be huge for problems of interest)
= |nputinto FEA

= Proposed approach: “On-the-fly” sample generation
= Given value of the load at time t, compute load at time t + At

= Based on (1) Shannon’s sampling theorem; and (2) Conditional
Gaussian random variables

= Was developed for stationary processes’; herein we provide an
extension to non-stationary processes

= Efficient square-root-like decomposition of a sequence of covariance
matrices (not covered)
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Outline

= Shannon sampling theorem
= Review for deterministic functions

= Discuss truncation and aliasing errors

Sampling theorem for Gaussian processes
= Definition
= Properties

= Focus is on non-stationary processes

Monte Carlo simulation
= Algorithm
= Applications

= Two academic examples

= Engineering example: Spacecraft planetary entry
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Shannon Sampling Theorem ) .

Let x(t) be a real-valued function with frequency content contained
in (—v., ), 0 <rv, <oo. The sequence of approximations

()= Y w(kte)alt—kt), teR, n=12...

|k|<n
sin(v, t) T
where a(t) = ———=, t. = —
Vct VC

converges to x(t) as n — oo at each t € R.

" Truncation error

| sin(v. t)|

o(t) = (1)) < P2

Decreases with increasing n



Shannon Sampling Theorem (cont.) @

= Aliasing error

Let 7 < v, be the sampling frequency, and let Z,,(t) be x,,(¢) with ¢ = 7/ in
place of t.. Aliasing occurs because T, (t) = lim,_,~ Z,(t) does not coincide
with x(t). Let xz(v) be the Fourier transform of z(t), then

Example

2(t) — o)) < ~ /| Jerlar

T

= Decreases with increasing sampling
frequency v
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Application to Gaussian Processes

" let X(t),—0co <t < oo be a Gaussian process with zero mean

= Global approximation for X(t)

X,(t)= ) X(kt)a(t—kt), teR, n=12...,
|k|<n

= Local approximation for X(t)

ni+n—+1
Xo(t)= )  X(kt)a(t—kte), te[nite,(ne+1)t], ny=|[t/tc]

k=ns—n
= Properties of the approximations
1. lim,, oo E[(X (1) — X,,(¢))?] = 0 at any time ¢
2. X,, converges almost surely (a.s.) to X as n — oo
3. X,, becomes a version of X as n increases
** These properties also hold for X,, **

= Bounds on truncation and aliasing errors similar to those for
deterministic functions can be constructed 7




Focus on non-Stationary Processes .

" let X(t),—co <t < oo, be aGaussian process with zero mean,
covariance function c(s,t) = E[X(s) X (¢)], and generalized

spectral density

1 —1 (Vv s—
s(v,m) = PEoE /R2 c(s, t)e W=t qs dt

v,1n) is complex-valued even for real-valued processes and satisfies s(v,n)* =
/'77 V)? vl/? /r} E R

B S
S

N N

= We say X is “bandlimited if s(v,n) = 0, (v,n) € D¢, where D = [—v., ] X
[—ve,v.] and 0 < v, < 00 is a constant

s If X is a weakly stationary process with zero mean and spectral density sg, its
generalized spectral density is s(v,n) = sy (532) §(v —n)

8
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Some Properties ) o

= Bandlimited non-stationary processes

The m.s. difference between X (¢) and its approximation X, (¢) is such that

i | (X(1) - Xn(t)>2] 0

n—oo

= Non-bandlimited non-stationary processes

If s(v,m) is square integrable, that is, if [, [s(v,7)]* dvdny < oo, then

7,— OO c

lim B [(X(0) — X, ()] < 4/ (v, )2 dvdn

= These properties demonstrate that the Sampling Theorem
can be used to approximate non-stationary Gaussian

processes X
** These properties also hold for X,, **




Monte Carlo Simulation ) i,

= Three-step procedure to produce samples of X,,(¢), the local
approximation for X (¢), a non-stationary Gaussian process
with zero mean, on [0, 7]

1. Select cutoff frequency v. and half window-width »n that
defines {X(kt.)}, k=n;—n,...,ny +n+1
2. Generate independent samples of R?("*1.valued Gaussian

random variable {X(kt.)}, k=1,...,2(n+ 1) using classical
algorithms; use them to calculate samples of X, (¢) in cells

0,tc], .oy [(n4+ 1) te, (n+2) ]
3. Extend the samples in the time interval [0, (n + 2)t.] to the

subsequent time interval by using properties of conditional
Gaussian variables

Repeat step 3 until moving window contains endtime 7 10




Sandia
r.h National
Laboratories

Applications

= Example 1: Uniformly modulated process

Let Y(t), t € R, be a stationary Gaussian process with zero mean and covariance
function cy (1) = E[Y (t + 7) Y(¢)] = exp(—=A|7|), A > 0, 7 € R. Then

X(t)=p@)Y(t), teR,

is a non-stationary Gaussian process with zero mean, covariance function c(s,t) =

E[X(s) X(t)] = B(s) B(t) cy (s — t), and generalized spectral density
Estimates using 5,000
MC samples
(n, ) = (10,10)

1
s(vim) = (27)2 Jge

B(s) B(t) e M=t gmi(s=nt) g4 q¢

5 samples of X, (;5)




Applications ) i

= Example 2: Fractional Brownian motion

Let H € (0,1) be a constant and let Bg(t), t > 0, be a fractional Brownian
motion, that is, a non-stationary Gaussian process with zero mean, covariance
function

(&%)

Std[X (1)]

1
cy(s,t) = E[By(s) Bg(t)] = 3 20 2 s 27| s t>0,

and initial state By (0) = 0. Define L

Esti ing 5,000
X(t)=10<t<T7)Bpy(t), 0 <7 <00 Msélr::rt\?;gsmg 0

0 25 50

()]

5 samples of X, (t)




Application — Spacecraft Atmospheric Entry@ .

One atmospheric
variable vs. altitude

Mars Pathfinder*

10000 meVz
2Bo
Free-body /
diagram A
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5000
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= QObijective: Predict vibration response of spacecraft to random
fluctuations in atmospheric conditions during planetary entry
= Random process of atmospheric variables with altitude
= Mapped to applied force on spacecraft via 6dof trajectory analysis
= Analysis
= High-fidelity finite element model for spacecraft
= Applied force is a non-stationary stochastic process (aerodynamic drag)
= Perfect candidate for proposed on-the-fly method 13




Application — Spacecraft Atmospheric Entry@ .

Estimates of covariance function
c(t,s) over various time segments

i
3<ts<31|l 200 J5§t,s§5.l

*500 samples of (stochastic) drag force, X(1)

50+ 8
ol- sy blold l"M"“ N mll 'Mll ‘“ Mlnllm'rhyl Il
Aty IIT “M ’"" |.|L||||, Laal )
-50
0 : ; : : 0

t (sec) g

= Procedure

1. Compute 500 samples of X(t), the stochastic drag force®
2. Estimate covariance function of X(t)

3. Utilize on-the-fly method within FE solver to compute structural
vibration response 14



Summary )

= QObjective was to develop new algorithm for generating
samples of non-stationary Gaussian processes
= Applications involving long-time transient events
= Avoid the need to store entire load history to file
= |nstead realize the load “on-the-fly”

"= Proposed method was based on sampling theorem for
stationary processes, extended to non-stationary processes
= Developed bounds on truncation and aliasing errors

= Efficient square-root-like decomposition of a sequence of covariance
matrices

= Applications

= Simple examples

15




