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Abstract. An aerosol of nanoparticles forms a Knudsen layer when diffusing in a Brownian fashion toward a solid wall. 

More specifically, the particle number density in the gas by the wall approaches a nonzero value proportional to the flux. 

An approximate theory for the coefficient of proportionality as a function of the particle sticking probability at the wall 

and the drift velocity normal to the wall is compared to Langevin particle simulations. The results are used to formulate a 

boundary condition that enables accurate advection-diffusion simulations of nanoparticle-aerosol transport.  
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INTRODUCTION 

In theoretical treatments of aerosol transport, the particle number density in the gas adjacent to a solid wall is 

almost universally considered to be zero [1]. While an excellent approximation for micron-scale aerosol particles in 

ambient air, this assumption breaks down for atmospheric aerosols of nanoparticles now used in experiments [2]. 

Rather than vanishing at a wall, the particle number density approaches a nonzero value proportional to the particle 

flux to the wall even when the probability that an impacting particle sticks is unity. The presence of the wall 

modifies the particle velocity distribution function from its form in an unbounded medium within a few thermal 

stopping distances of the wall. This affected region is denoted here as the “particle Knudsen layer” by analogy to the 

Knudsen layer observed for gas molecules within a few mean free paths of a wall [3]. The particle Knudsen layer is 

investigated theoretically using the generalized Fokker-Planck equation [4] and computationally via massively 

parallel particle-transport simulations based on the Langevin equation for Brownian particle motion [5].  

Two idealized reflection processes are investigated that include the important physics but avoid the complexity 

of real particle-wall interactions [6,7]. In the first, a velocity-independent sticking fraction is prescribed, and any 

particle impacting the wall has this probability of sticking regardless of its incident velocity. In the second, a cutoff 

velocity is prescribed, and any particle impacting the wall sticks if its normal incident velocity is less than this value. 

In both processes, if a particle does not stick, the reflection is taken to be specular.  

GENERALIZED FOKKER-PLANCK APPROXIMATION 

An approximate theory for the behavior of particles near a wall is developed for these two reflection processes. 

For a nonzero flux to the wall, the particle velocity distribution in the gas far from the wall is applied at the wall, and 

the outgoing portion of the flux is equated to the reflected part of the incoming portion of the flux.  

Chandrasekhar [4] derives the generalized Fokker-Planck equation (GFPE) for the dynamics of a particle in a 

fluid, Equation (249) of his treatise, given below in slightly different notation:  
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Here, N  is the particle velocity distribution function, t  is time, x  is position, u  is particle velocity, = −v u U  is 

particle thermal velocity, ( )1 2
2

B
c k T m=  is the most probable particle thermal speed when N  is a Maxwellian 

distribution at temperature T , 
B
k  is the Boltzmann constant, 3 6m dπ ς=  is the particle mass, d  is the particle 

SAND2008-2674C



diameter, ς  is the particle mass density, β=U F  is the drift velocity, F  is the total non-drag force on a particle 

(e.g., m=F g  is the force from a gravitational acceleration of g ), mτ β=  is the particle stopping time, β  is the 

particle drag coefficient (force per unit velocity), and 2 2
B

D c k Tτ β= =  is the Stokes-Einstein particle diffusivity 

[1]. Herein, all particle and gas parameters are taken to be independent of time and position, and the gas is taken to 

be motionless. For this situation, the above equation has the following time-independent solution:  
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Here, n  denotes particle number density, subscripts indicate quantities that are independent of time and position, 

and the arrow denotes the zero-drift-velocity limit ( →U 0 ). The zero-drift-velocity solution is physically realizable 

only in the limit of a small particle-number-density gradient, which ensures that regions of negative probability 

density occur only at large velocities and thus are exponentially small.  

Under well-understood circumstances [1], aerosol transport is described by the advection-diffusion equation:  
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At a wall, the advection-diffusion equation requires a boundary condition, which is almost universally taken to be 

the zero-concentration condition: 0n =  at the wall [1].  

Although it is strictly applicable only in unbounded space, the GFPE solution can be used to construct a more 

general boundary condition for the advection-diffusion equation. This boundary condition has the following form, 

where f  is termed the “particle-flux coefficient” and n̂  is the unit normal pointing into the wall and out of the gas:  
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This “particle-flux boundary condition” is exactly analogous to the well-known velocity-slip and temperature-jump 

boundary conditions [3], in which discontinuities in tangential velocity and temperature between a wall and the 

adjacent gas are proportional to shear stress and heat flux, respectively. The particle-flux boundary condition is 

found by applying the GFPE solution for unbounded space at the wall, equating the outgoing portion of the flux to 

the reflected amount of the incoming portion of the flux, where [ ]R u  represents the reflection probability,  
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and rearranging the resulting expression into the form of Equation (4). This approach is applied to the two reflection 

processes discussed above. The sticking-fraction process has [ ] 1R s= −u  and yields the below expression, where 

ˆU = ⋅U n  is the normal drift velocity (positive into the wall) and Û U c=  is its normalized value:  

 ( ) ( ){ }( ){ }
1

2 1 2ˆ ˆ ˆ2 1 erf 1 expf s s U U Uπ
−

   = − + − − −    .  (6) 

The cutoff-velocity process has ˆˆ ˆ[ ] H[ ]
n

R U= ⋅ −u n u  and yields the below expression, where H  is the Heaviside 

function, 
n
U  is the cutoff velocity, ˆ
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d n
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It is convenient to characterize the cutoff-velocity reflection process using the “cutoff parameter” 2ˆ1 exp[ ]
n
Uσ = − −  

in place of the normalized cutoff velocity ˆ
n
U . The cutoff parameter σ  is similar to sticking fraction s  in that 1σ =  



( ˆ
n
U →∞ ) and 1s =  both correspond to all particles sticking and 0σ =  ( ˆ 0

n
U = ) and 0s =  both correspond to all 

particles reflecting. For an incident half-range Maxwellian, the cutoff parameter equals the sticking fraction; 

however, when the flux to the wall is nonzero, the incident distribution is not a half-range Maxwellian.  

LANGEVIN PARTICLE SIMULATIONS 

Simulations are performed for particles in a gas near a wall. The gas is taken to be a thermal bath at temperature 

T , so its molecules are not directly simulated. The stochastic motion of a particle of mass m  at position x  with 

velocity u  is described by the Langevin equation [5] with particle drag coefficient β , constant drift velocity U , 

and random thermal force X  corresponding to the gas conditions at temperature T :  

 ( )md dt β= − +u U u X , d dt =x u .  (8) 

Ermak and Buckholz [5] present an algorithm for integrating the Langevin equation forward in time based on the 

GFPE solution of Chandrasekhar [4] for the distribution function of a particle with velocity 
0
u  and position 

0
x  at 

time 
0
t . More specifically, they present a method of selecting two independent Gaussian random vectors 

1
B  and 

2
B  

to advance the particle velocity and position from 
0
u  and 

0
x  at time t  to u  and x  at time t t+ ∆ :  
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The Ermak-Buckholz algorithm is implemented in an existing Direct Simulation Monte Carlo (DSMC) code [8]. 

This approach takes advantage of the similarity between tracking particles and molecules: the only significant 

difference is that particles interact with a background fluid whereas molecules collide with one another. Moreover, 

the particle-tracking implementation is massively parallel, with good scaling behavior through 10,000 processors, 

and is therefore capable of simulating billions of particles simultaneously [8,9,10,11].  

TABLE 1. Physical and numerical parameters used in analysis and simulation: air and polystyrene latex (PSL).  

Boltzmann constant  
Bk   1.380658×10−23 J/K   Slip parameter, particle  

sα   1.165  

Molecular mass, gas  M   4.811×10−26 kg   Slip parameter, particle  
sβ   0.483  

Pressure, gas  p   101325 Pa   Slip parameter, particle  
sγ   0.997  

Temperature, gas  T   300 K   Drag coefficient, particle  β   2.950×10−13 N/(m/s)  

Mass density, gas  ρ   1.177 kg/m3   Stopping time, particle  τ   14.91 ns  

Molecular mean speed, gas  c   468.2 m/s   Thermal speed scale, particle c   1.3724 m/s  

Viscosity, gas  µ   1.85×10−5 Pa·s   Diffusivity, particle  D   1.404×10−8 m2/s  

Hard-sphere parameter, gas  φ   5π/32 ≈ 0.491   Stopping distance, particle  �   18.13 nm  

Mean free path, gas  λ   68.37 nm   Domain length  L   1000 nm  

Diameter, particle  d   20 nm   Cell size  x∆   4 nm  

Mass density, particle  ς   1050 kg/m3   Time step  t∆   0.5 ns  

Mass, particle  m   4.398×10−21 kg   Steady-state time 
Lt  106 ns 

Knudsen number, particle  Kn   6.837   Gravitational acceleration g  0 m/s2 
 

Table 1 shows the gas and particle parameters for the Langevin simulations. Spherical polystyrene latex (PSL) 

particles of diameter 20 nmd =  and ambient air are considered, as in recent experiments [2]. The molecular mean 

free path is cλ µ φρ= , where µ  is the gas viscosity, 5 32φ π=  is a constant, 
B

Mp k Tρ =  is the gas mass 

density, ( )1 2
8

B
c k T Mπ=  is the molecular mean speed, and M  is the molecular mass. The particle Knudsen 

number is Kn 2 6.837dλ= = , and the drag coefficient is 3 d Cβ πµ= , where the numerator is Stokes drag and the 

denominator is a slip correction factor of the form [ ]( )1 Kn exp Kns s sC α β γ= + + −  [1,2]. For these conditions, the 

particle thermal stopping distance is ( )1 2 1 2
2 18.13 nmD c cπ π τ= = =� , which is similar to the particle diameter.  

Table 1 also shows the numerical parameters used in these simulations. The wall is located at 0x = , and the 

particle source is located at x L= , where 1000 nmL = . This domain is divided into 250 cells of width 4 nmx∆ = . 

Initially, the domain is devoid of particles. Particles enter the domain at a fixed rate from the source (particles 



attempting to exit are reflected specularly), and particles interact with the wall according to one of the reflection 

processes. Time steps of 0.5 nst∆ =  are used, and a time of 610  ns
L
t =  is allowed to pass before sampling is 

initiated to ensure that steady behavior is established. Typical simulations use ~10
5
 particles in the domain and 

sample ~10
9
 particles per cell over ~10

7
 time steps of steady behavior. Simulations typically require 96 hours on 

200 processors of a Linux cluster (i.e., about 2 processor-years).  

 

FIGURE 1. Particle-number-density profiles for two wall interactions: left, sticking fraction; right, cutoff velocity.  

 

FIGURE 2. Particle-number-density Knudsen layers (departure from linearity): left, sticking fraction; right, cutoff velocity.  

Figure 1 shows particle-number-density profiles from Langevin simulations for both reflection processes with a 

zero drift velocity. The profiles are normalized so that the particle number density is unity at the source ( x L= ). 

Profiles are shown for five values of the sticking fraction s  (left plot) and the cutoff parameter σ  (right plot): 0.05, 

0.1, 0.2, 0.5, and 1.0. Each cutoff-velocity profile lies slightly above the corresponding sticking-fraction profile 

except for the case of 1s σ= = , for which the two profiles are identical to within the precision of the simulations. 

All profiles vary linearly with position except near the wall. This near-wall region, located roughly within 

0 0.1x L≤ <  (i.e., 0 100 nmx≤ < , 0 5x≤ <� ), contains the particle Knudsen layer of each profile. The particle 

number density adjacent to the wall is nonzero for all profiles.  

Figure 2 shows the near-wall Knudsen layers for the profiles in Figure 1. Each Knudsen layer is determined by 

taking the difference between the actual profile [ ]n x  and a straight-line fit [ ]lin
n x  through its linear portion away 

from the wall and subsequently dividing this difference by the slope of the straight-line fit. This slope scaling is 



performed so that all Knudsen layers are shown at the same particle flux. In all cases except 1s σ= = , the departure 

of the Knudsen layer from the corresponding straight-line fit is larger for the cutoff-velocity reflection process than 

for the sticking-fraction reflection process, and the departure increases as the sticking fraction or the cutoff 

parameter is decreased (i.e., as more particles are reflected by the wall).  

 

FIGURE 3. Particle-flux coefficient at zero drift velocity for two wall interactions: left, sticking fraction; right, cutoff velocity.  

COMPARISON 

Figure 3 shows the particle-flux coefficient f  as a function of the sticking fraction s  (left plot) and the cutoff 

parameter σ  (right plot) for zero drift velocity. The particle-flux coefficient is determined as follows. The straight-

line fit yields a slope of ( )
0

dn dx  and an intercept of 
0
n  at 0x = . The particle-flux coefficient is then found from 

the particle-flux boundary condition (Equation (4)): ( )( )1 2

0 0
f D cn dn dxπ= . The symbols are the simulation 

values, the dashed curves are the GFPE approximations ((Equations (6) and (7)), and the solid curves are empirically 

determined correlations that represent the simulation values to ±0.001 (their uncertainty):  
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The differences between the approximation and simulation values are modest for the sticking-fraction reflection 

process but are larger for the cutoff-velocity reflection process. This is not surprising because, for the cutoff-velocity 

reflection process, the reflected part of the incoming portion of the particle velocity distribution differs substantially 

in shape from the outgoing portion.  

Figure 4 (left plot) shows profiles of the particle number density when the drift velocity is nonzero. In these 

cases, the profiles decay exponentially in the upstream direction of the drift velocity. Figure 4 (right plot) also shows 

the particle-flux coefficient f  as a function of the normalized drift velocity Û U c=  when all particles stick to the 

wall ( 1s σ= = ). The symbols represent the simulation results, the dashed curve represents the GFPE approximation 

(Equation (6)) with 1s = , and the dotted curves represent the asymptotic behavior of the approximation for large 

positive or negative values of the drift velocity. The differences between the simulation and approximation values 

are modest and comparable to those observed in the preceding figure.  

CONCLUSIONS 

This theoretical and numerical investigation demonstrates that the particle number density of an aerosol tends to 

a nonzero value at a wall and that this value is proportional to the flux and depends upon the reflection process. This 

effect is important for standard nanoparticles now available for experimentation and becomes more important as the 



probability that an incident particle sticks to the wall is reduced. A methodology is developed that enables an 

approximate advection-diffusion boundary condition to be determined for arbitrary reflection processes. Although 

developed for a flat surface, this boundary condition can be used for a nonflat surface so long as its radius of 

curvature is large compared to the thickness of the particle Knudsen layer (corners do not satisfy this restriction).  

 

FIGURE 4. Left: particle-number-density profiles with nonzero drift velocity. Right: corresponding particle-flux coefficients.  
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