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}ML Features (1)

o ML provides scalable multilevel/multigrid preconditioners.
# Method types

o

® &6 & & o

Smoothed Aggregation (SA) - symmetric or nearly
symmetric problems.

Non-symmetric SA - non-symmetric problems.
MatrixFree - matrix-free SA.

DD / DD-ML - domain decomposition.

Maxwell - Maxwell’'s equations.

RefMaxwell - new method for Maxwell’'s equations.
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&ML Features (2)

# Simple Trilinos interface.

#® Teuchos::ParameterList driven options.
Has sensible defaults (override what you don't like).

# Parameter validation for accuracy.
# MATLAB interface for some features (MLMEX).
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Using ML
// Start with a problem & build solver

Epetra_LinearProblem Problem(A, &LHS, &RHS);
AztecOO solver(Problem);

// Override any defaults
Teuchos: :ParameterlList List;

List.set("smoother: sweeps",2);

// Build the preconditioner
MultilLevelPreconditioner Prec(A,List);

solver.SetPrecOperator (Prec);

Sand
solver.Iterate(100,1e-12);// Solve (:Jl\lg?ioﬁ'al

Laboratories
Recent Algorithmic (and Practical) Developments in ML — p.7/28



il '
$()utline

Introduction to ML.
Solving Maxwell’s Equations w/ RefMaxwell.
Repartitioning w/ Zoltan and Hypergraphs.

© o o ©

Conclusions & Future Work.

Sandia
National
Laboratories

Recent Algorithmic (and Practical) Developments in ML — p.8/28



’ e e . kit i e,
o B U
B e 5 W
- -'.-_,;,:13- = " i
=
Ee | I e

Target Applications

Electromagnetic phenomena modeled by Maxwell’s“ '
equations occur in many Sandia applications.

HEDP: Wire arrays and liners for Z machine simulations.
Magnetic Launch: Coil & rail guns (ONR).

Code: ALEGRA & Trilinos/ML (SNL).

Sandia
National
Laboratories

Recent Algorithmic (and Practical) Developments in ML — p.9/28



® o ©

V X %V XE+cE=0 inQ *4“‘" A ey H
nxE=0 on['  \ b
nx - VxE=0 onI" ‘” 11 ] i
V x V¢ = 0 = large null space compllcates dlscretlzatlon
+ solver.
Large jumps in o.
Significant mesh stretching.

Large problems & repeated solves
— Scalable linear solvers are critical.
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} Continuous/Discrete Relationship

Node Edge Face Element
H(Grad) H(Curl) H(Div) 12
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Hodge Laplacian

Node Edge Face Element
H(Grad) H(Curl) H(Div) 12
\V, V.
]D)O ]D2
M, M
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} Discrete Hodge Decomposition

(M; DDy +Mj)e =0
# Consider
e = a + Dop,
where Dja = 0.
# This gives us the block 2 x 2 system

| MDDy + My M; Dy a b
MDDy MoDiDy | | p D{b
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}Discrete Hodge Decomposition

(M; DDy +Mj)e =0
# Consider
e = a + Dop,
where Dja = 0.
# This gives us the block 2 x 2 system

| MDDy + My+M; DD MiDy a b
MDDy MoDiDy | | p D{b

o We can add DyID; w/o changing answer!
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}Preconditioning

| MDDy + MiDoDE +M;  M;Dy a b
MDDy MDDy | | p Db

#® Use preconditioner:

- AMG1; I
AMGs, | | DY

P—lz[f ]Do}

# This preconditioner is implemented in mi/src/RefMaxwell In
Trilinos 8.0.
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pSD Weak Scaling

Problem Code: ALEGRA (SNL).

Problems: LinerF, Sphere.

Material Parameters: 1e6 jump in conductivity.
Geometry: Regular meshes.

Compare Maxwell vs. RefMaxwell
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Scaling: Old vs. New
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Why Repartitioning?

#® Coarse grids = less work per proc = poor performance.
# Solution: Move data to leave some procs idle.

Computation
Dominated

Communication
Dominated
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}Why Repartitioning?

® Goals

L

L

Move to a subset of processors
= Increase computation to communication ratio.

Rebalance load.

® Method

L

o

L

ML current supports RCB via Zoltan.
What about irregular meshes?

What about consistency between partitions at different
levels?

New Feature: Hypergraph Repartitioning.
= To be released in Trilinos 9.0.
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What is a Hypergraph?
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}Why Hypergraphs?

# For (compressed row) matrix:
# \ertices == rows.
o Hyperedges == columns.
o Weights == Communication volume for that edge =
we-( # processors in edge - 1).
o Why Hypergraphs?
o Models structurally non-symmetric systems.

o Models communication costs — esp. important for
non-homogeneous meshes.

o Minimizes combined cost of application communication
and data migration.
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Z.oltan at Work
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® 680k rows, 2.3M nonzeros @ Sandia
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‘ﬁ Conclusions

#» RefMaxwell
o Handles jumpy coefficients well.
o Ultilizes existing technology.
o Scalability up to 24.5k procs!

# /Zoltan & Hypergraph Repartitioning

o Accurately models application and data migration
costs.

o (Good results on test problems.
o Future: MLs unstructured mesh applications.
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J Future Directions

TOPS-II: Interface w/ PETSc.

Extreme Sca
Adaptive met
Improved mu

ability.

timaterial algorithms.

nods for circuit problems.
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