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Earth model parameters:
ρ(x) - mass density

(x), (x) - elastic moduli

Wavefield variables:
vi(x,t) - velocity vector
ij(x,t) - stress tensor

Body sources:
fi(x,t) - force vector

mij(x,t) - moment tensor

Nine, coupled, first-order, linear, non-homogeneous partial differential equations.

(3 equations)

(6 equations)

Derived from fundamental principles of continuum mechanics (conservation of mass,
balance of linear and angular momentum), an isotropic elastic stress-strain
constitutive relation, and linearization to the infinitesimal deformation regime.

Elastodynamic Velocity-Stress System
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3D spatial staggering
 high centered FD operator accuracy

1D temporal staggering
 high centered FD operator accuracy

Staggered Spatial and Temporal FD Schemes



Straight Air-Filled Tunnel Model

Rock:
α = 3500 m/s
β = 2020 m/s
ρ = 2400 kg/m3

Air:
α = 350 m/s
β = 0 m/s
ρ = 1 kg/m3

Explosion sources:
25 Hz Ricker wavelet
Duration: –50 ms to +50 ms

+x

+z

25 mSquare cross section:
2.5 m × 2.5 m

radius:
R = 100 m

Receivers:
Vx, Vz, P, Ry

polar angle φ



Finite-Difference Modeling Specifications

3D wave propagation modeling with an O(2,2) staggered-grid FD algorithm   
for isotropic elastic media:

1) Earth Model:
1.1) background:   homogeneous wholespace (no free surface) with

α = 3500 m/s,  β = 2020 m/s,  ρ = 2400 kg/m3.
1.2) tunnel:   square cross-section with 2.5 m x 2.5m x 25 m dimensions;

α = 350 m/s,    β = 0 m/s,        ρ = 1 kg/m3.

2) Numerical Grids:
2.1) Spatial:  Δx = Δy = Δz = 0.5 m;  501 x 501 x 501 ~ 125 million gridpoints;

~6.04 Gbytes RAM required (for 12 3D single-precision arrays).
2.2) Temporal:  Δt = 0.070 ms; 10716 timesteps; simulation time 750 ms.

3) Acquisition Parameters:
2.1) Point isotropic explosion at (0, 0, 0) m (center of tunnel) and (-12,0,0) m (left end

of tunnel); 25 Hz Ricker wavelet, duration –50 ms to + 50 ms. 
2.2) Timeslices capturing Vz, Vx, P, and Ry on an xz plane through source location.
2.3)  Point receivers recording Vz, Vx, P, and Wy at 100 m radius from tunnel center.

4) Computation:
4.1) Single processor workstation with Intel Xeon 5160; 3 GHz rate, 4 Mbyte cache.
4.3) 64 bit addressing required to access sufficient RAM.
4.2) Execution time: 2126 minutes = 35.4 hours = 1.48 days.



























Source: (0,0,0) m
(at center of tunnel)

Source: (-12.5,0,0) m
(at left end of tunnel)

Resonant Response
Comparison
(Vz, Vx, P, Ry)

source pulse 
terminates here!



Source: (0,0,0) m
(at center of tunnel)

Source: (-12.5,0,0) m
(at left end of tunnel)

Resonant Response
Comparison
(Vz, Vx, Vr, Vt)



An infinitely-long, evacuated, 
cylindrical borehole of radius a

Homogeneous and isotropic
elastic wholespace: 

P-wave speed: α
S-wave speed: β
Mass density:   ρ

Time-varying traction applied
to finite-length h of borehole wall:

1) radial: +r direction
2) axial:  +z direction
3) tangential: +θ direction

+z
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-h/2
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The Seismological Model

Stress vanishes elsewhere on
borehole wall
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Cylindrical (r,θ,z) coordinate system 
parameterization:



Traveling, Axi-Symmetric, Radial Stress Pulse
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pulse propagation speed
rectangle function localizes

stress to –h/2 < z < +h/2

stress wavelet time/space positioning
parameters

A better pulse? :



Far-Field (1/R) Particle Velocity Solution
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-propagates with P-wave speed α, and has a “peanut shaped” radiation pattern

Far-field radial velocity:

Far-field transverse velocity:

v

z
t 0

00   
















cv

cv

v

h
c

h

v

c

c

h
Tc

for 

for 

          

cos

cos





-propagates with S-wave speed β, and has a sin 2φ radiation pattern

Dependence on source pulse speed v is via the two timeshift parameters:



N “one-way trips” of
tunnel acoustic pulse:

Δt = h / v

A+

h

A–

acoustic
energy
source

Resonating Line Source Solution

Methodology:
Utilize existing solution for a single (unidirectional)
acoustic pulse propagating along tunnel, and

1) delay in time by Δt = h / v.
2) scale by tunnel end reflection coefficients

A+ and A–.
3) sum over N “one way trips”.
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Tunnel resonance filter is a combination
of three frequency-dependent factors:

H(ω) = F1(ω) F2(ω) + F3(ω)
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The classical 
organ pipe filter!



Tunnel Resonance Filter (H = F1 x F2 + F3)

Broadside response,
Positive reflection coefficient

product.

Endfire response,
Positive reflection coefficient

product.



Broadside response,
Negative reflection coefficient

product.

Endfire response,
Negative reflection coefficient

product.

Tunnel Resonance Filter (H = F1 x F2 + F3)



Theory vs. Numerical Experiment Comparison

Radial particle velocity recorded at polar angle φ = 0o



Open-Ended Tunnel Model

+x

+z

25 m

radius:
R = 100 m

Receivers:
Vx, Vz, P, Ry

polar angle φ

Air:
α = 350 m/s
β = 0 m/s
ρ = 1 kg/m3

Rock:
α = 3500 m/s
β = 2020 m/s
ρ = 2400 kg/m3

Explosion source:
25 Hz Ricker wavelet
Duration: –50 ms to +50 ms

Square cross section:
2.5 m × 2.5 m











Source: (0,0,0) m
(at center of tunnel)

Enclosed tunnel

Resonant Response
Comparison
(Vz, Vx, P, Ry)

Left end open to air



Resonant Response
Comparison
(Vz, Vx, Vr, Vt)

Enclosed tunnel

Source: (0,0,0) m
(at center of tunnel)

Left end open to air



Conclusions and Ongoing Work

1) Resonance behavior of enclosed/open air-filled tunnels
established by numerical simulation experiments with
3D FD seismic wave propagation algorithm.

2) Resonating line-source theory requires significant
improvements:
- tunnel-end reflection coefficients.
- force sources applied at tunnel endpoints.
- attenuating acoustic pulse.

3) More modeling scenarios urgently needed:
- fat tunnels. 
- various cross-sectional shapes.
- non-straight tunnels.
- heterogeneity and/or topography in background model.


