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The Scale of Things - Nanometers and More
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Atomic Sizes

Sizes are radii in picometers
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Cleanliness Matters ) B,

Dust particles are huge at the “nanoscale” (film defects, pin holes,...)
Deposition systems are located in cleanrooms
Operators required to wear bunny suits
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Thin Film Deposition Methods - PVD @ .

Physical Vapor Deposition (PVD): Material is removed from a target and
deposited on to a substrate
Several different methods: Sputtering, Evaporation, Laser Ablation, etc.
a. Sputtering — Use of Plasma and lon Acceleration to remove material
(“sputter”) from target then deposit on substrate.
b. Evaporation — Condensation of metal vapor in high vacuum on a
substrate
c. Can also do reactive deposition
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Physical Vapor Deposition (PVD)

Sputter deposition E-beam Evaporation
Target (cathode) .
e _© o e o © et Fim
Reflected ® \( ® o
neutral @ ® (% Sputtered
® atoms/molecules U e o

(0}
Inert ions (Ar) ..

®® M
r Gas phase collisions/
9% o reduced energy
Film e«—X © o

« Target material removed by kinetic energy of

Inert lons o o 10kV e-
» Requires plasma ignition for ionization of

sputter gas (Ar) « Target material vaporized by thermal energy
« Good control over film properties (pressure, from electron beam

power, biasing, temperature) « Terrific rate control with feedback from QCM

« Can deposit at extremely slow rates (ppm
level composition control)




Thin Film Deposition Techniques @

Evaporation requires a suitable vapor pressure for this technique to work.
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Figure 12.2 Vapor pressure curves for some commonly
evaporated materials (dafa adapted from Alcock et al.).

http://burkett.eng.ua.edu/ECE438538/Lectures/Ch12.pdf




Thin Film E-beam Evaporation ) ..

Equipment

* High Vacuum e-beam system
Capabilities

* Avariety of elements and compounds

Thickness control from 0.1A to > 10 pm

Multilayer depositions (4 materials per vacuum
cycle).

Substrate heating to 500°C
Glow discharge cleaning

Up to 500 mm substrates

Advantages

* Excellent line of sight deposition compared to other
vapor deposition techniques makes it ideal for
shadow masking patterns

Reactive deposition for oxides, nitrides and hydrides.

Four pocket rotary turret 10kV
electron beam gun, and molten
material during deposition




Sputter Deposition ) &,

DC Magnetron Sputtering for metals
RF Magnetron for insulating materials

Sputter guns at 90° Two 2” sputter targets
& >



Thin Film Co-Deposition ) ..

Evaporation:

* Triad e-beam evaporation of ternary
alloy thin films

e Shutter in front of substrate for
consistent composition, graded or
layered films

* Independent QCM control of material
deposition rate

e Compositional control to < 0.1%

Sputtering:

e Co-deposition of elements, alloys and
compounds

e Composition control to ~1-2%, limited
by minimum power required for
plasma ignition

e Composite targets expensive and limits
experimental compositional range




PVD Microstructure

Film morphology

Zone model (Zones 1, 2, 3, T) indicates the films final
characteristics based on the substrate temperature and 1on energy;
T-region 1s characterized by very small grains

Zonel-low T, low 10n energy
yields amorphous, porous
materials: Raise T or lower P
moves to T-zone
Zone2-Increase T and/or
increase 1on energy will
mcrease grain size - tall
columnar grains
Zone3-Increase T, film has
large 3-D grains — surface may

be rough and hazy

Figure 12.21 The three-zone model of film deposition as proposed by
Movchan and Demchishin (after Thornton, reprinted by permission, AIP).

X-sect TEM Evaporated Au Thin Film
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Thin Film Research & Development @E:.
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CVD ) &,

PVD CVD PECVD
Iz, CHy4
o000 O0O0 o®°
Pt b e 0‘-!}.
200000 O o0

2 T T T ."."

partid pyrolysis in boundary layer

Diamond Film

substrate

kinetic process at surface complete pyrolysis on surface “

» Complex combination of chemical reactions and gas kinetics
» Uses hazardous precursors

» Gas-phase and surface reactions both must be controlled

» Typically operated at high temperatures T>300°C

14
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Thin Film Deposition Techniques @

Chemical Vapor Deposition (CVD): “Material synthesis method in which the
constituents of the vapor phase react to form a solid film at some surface.”
Semiconductors, Oxides, Nitrides, Organics, Metals

1. Solid formed depends on chemical reaction (pyrolysis, reduction, oxidation, hydrolysis,
nitridation, carbidization, combinations)
2. Transport processes are critical: diffusion of reactants to surface, surface event,

removal of products _ _ — —masstransport— _ _
fluid flow: diffusion:
gas follows transpott acroes
streamlines through streamlings driven by
the reactor concentration gradients
I
gasin —rgj’ % — gas out
F o
'
a % gas-phase

—- chemistry:

. form precursors, form dust;
surface chemist f electons and ions fom
formation of film, removal o - } L4 pasma
walatile poducts; ion é
bormbardmentif gasma OH

heat transport:
conwection, conduction,

radiation determine
temperatures

heatars

http://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/introduction/intro_images/chamber_closeup_1.GIF

J. Vossen & W. Kern, eds., Thin Film Processes, Academic Press, 1978



ALD — a special type of CVD )

Atomic Layer Deposition (ALD) - Uses Sequential Reagent Exposures and Surface Limited
Reactions to Yield Highly Conformal Coatings with Exquisite Control of Film Thickness

“A” flow
purge purge
Nitrogen

Heated Substrates
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Al,O; CVD - reaction: W CVD - reaction: _
2A1(CH3);(8) + 3H,0(8) — Al,05(s) +6CH, (g) WE(g) + Si,He(g) > W(s) 2SiHF;(g) +2H,(g)
ALD Al O, half-reactions: (150°C ~ 1.0 A/cycle) W-ALD - half-reactions: (150°C ~ 2.5 Alcycle)
Al(CH,)4(g) + Al-OH" — Al-OAI(CH,)," + CH,(g) W-SiHF," + WFg(g) - W-WF," +SiH,F, (g)
2H,0(g) + -Al(CH,),"— -Al(OH)," + 2CH,(g) W-WF," + Si,H(g) - W-SiH,F," + 2H,(g) + SiH,F )




ALD conformally coats very
high aspect ratio structures
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1. Gear top 2. Gear bottom 3. Hub interior
redeposited material

AlLO,

Si




Optical Films ) ..

White Light, SizN, on Si A
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Optical Thin Films
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(AR Coating on Glass) Solar irradiance
Alternating thin films of transparent
materials with high and low refractive :
index values are used to reduce the 5] :
light reflection from glass in front on - ;
photovoltaics.

example of Anti Reflection coating effect

Without AR Coating - Single-layer coating of MgF2 - Multi-layer coating by NIDEK
: . 25
4.26% A
4.08% 20
o —b

>

L O s
V.L=1 52 | (&)
O
| @

: : L 10
Transmittance = 91.83% - Transmittance =97.19% Transmittance = 99.6% 8
Reflectance = 8.17% . Reflectance =2.81% . Reflectance = 0.4% s
: : q)




Switchable Optics ) ..

a
Pd
metallic phase
4
semiconducting hydride phase
substrate
b
Pd
‘t): ‘tiﬂ — metallic phase
'}?:'I;f')\;;" ,ﬁf,— semiconducting hydride phase
Gasochromic: reversible reflectance AITERCIS
change in the presence of H,
Mg,NiH, and MgH, phases are Fabricated by e-beam evaporation.
transparent semiconductors Codeposition of Mg,Ni 120nm thick

followed by 8 nm of Pd

20
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Tribology — wear resistant films

Au thin film hardened via Hall-Petch mechanism

From: Lo, Augis, and Pinnel, JAP (1979)

grain size, d (um)
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i
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40 4 '\ L 0.4 . .
50  measured hardness 02 Dayton Coating Technologies
(deviation from H-P occurs at grain size below ~ 100 nm)
1] - - T r 00 . . .
BooR Bl ® = Tool bits are coated with TiN and other
weight % ZnO H H
. o i s hard materials by sputtering
3.0 ! . L 12
| . 2
2.5 . 1 - 10 %
- . Ml g
= ] * = 8
& 20 | . -
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U-ﬁ-""|"''|""|""|""|""2
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for reference: Electrical resistivity measured via van der Pauw

method -- square Si wafers pieces coated with
composite, no adhesion layers

0.7 vol % Niis ~03wt % (type |, best ECR performance)
22vol%Niis~1wt% (type I, max allowed)
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Reactive Multilayers

Sputtering is used to produce reactive multilayers

Typical design (not requirements): S ————
Two reactant species e ——————————
Single, out of plane periodicity s ——
2-1,000 reactant layers Energy Source

Total thickness: 0.25-150 um 500 nm

Energy released by mixing

» Reactant pairs generally have here propagates the reaction.

a large heat of reaction, AH,:
Til2B : - 4.8 kd/g
AI/NIO : -2.2 kJ/g
Co/Al : -1.4kJlg
Al/Pt : -0.9 kd/g
Ni/Ti : -0.6 kd/g

Reactant Layers




Propagation speeds vary with bilayer
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thickness and with material system.

Reactions in air

Avg. Speed (m/s)
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Bilayer thickness (nm)

Bilayer thickness affects heat release rate

Slow release rate

| %

Fast release rate
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Reactive Nano-Foils ) S,

Ex. Cobalt / Aluminum (7.5 um) Heat of reaction used for joining
BL = 66 nm Al/Ni NanoFoil® lindium Corp

Now being used to bond sputter targets to
water cooled backing plates

Enables bonding temperature sensitive
materials and reduces stress from CTE

mismatch
|




Summary of Techniques

PVD CVvD ALD

*PVD (Physical Vapor Deposition) — Material deposited by line
of site from a physical source (RT to Moderate Temperature)
*CVD (Chemical Vapor Deposition) — Material deposited by
line of site for the gas phase, immediate reaction at the
surface (High Temperature)

*ALD (Atomic Layer Deposition) — Material deposited from the
gas phase but surface chemistry limited to only one monolayer
(Moderate Temperature)

Sandia
National
Laboratories




	Thin Films Deposition Methods
	Slide Number 2
	Atomic Sizes
	Cleanliness Matters
	Vacuum
	Thin Film Deposition Methods - PVD
	Physical Vapor Deposition (PVD)
	Thin Film Deposition Techniques
	Thin Film E-beam Evaporation
	Sputter Deposition
	 Thin Film Co-Deposition
	PVD Microstructure
	Thin Film Research & Development
	CVD
	Thin Film Deposition Techniques
	ALD – a special type of CVD
	ALD conformally coats very �high aspect ratio structures
	Optical Films
	Optical Thin Films �(AR Coating on Glass)
	Switchable Optics
	Tribology – wear resistant films
	Reactive Multilayers
	Propagation speeds vary with bilayer thickness  and with material system.
	Reactive Nano-Foils
	Summary of Techniques

