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• Background: double quantum dot qubit

• Progress
– MOSFETS

– Valley splitting

– Quantum point contacts and quantum dots
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Advantages Si Quantum Dot Spin Qubits:
• Low spin-orbit coupling

• High percentage Si28 reduces nuclear spin coupling

Advantages of the MOS System:
• Scaling advantage due to gate proximity to electrons

• No dopants required for transport

• Readily CMOS compatible

MOS Double Top Gate for 
Nanoelectronics
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Double Quantum Dot

• Charging diagram shifts with 
increased coupling

• Diagram can be used to 
determine electron occupation

• Voltage pulses can carry you 
through different occupations

V. d. Wiel, et al., Rev. Mod. Phys., vol. 75, 1 (2003) Petta, et al., Phys. Rev. Lett, vol. 93, 186802 (2004)
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Two Electron DQD Wavefunctions

• GaAs community showed a singlet-triplet DQD qubit in 2005

• The qubit basis states are (1) singlet and (2) triplet state of the DQD

– Magnetic field splits the two other triplets off (m = +/- 1)

• The spin configuration is sensed through its charge distribution
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QPC 
electrometer

Double Quantum Dot Qubit

• Sequence of pulses (a => d) used to initialize and read-out  

• The state is detected through single charge electrometry

• Electrometer can be QPC (shown above), Si SET or Al SET

a b c d

Petta et al., Science 2005
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Ohmics

Overview of Silicon Qubit

NanolithographyMOSFET modified
for nanolithography

MOSFET

Many-electron
quantum dot

Double dot with
integrated detectors

Control of quantum
states

Coulomb blockade,
Coulomb diamonds

Stabiltiy diagrams,
electrometer coupling

Coupling between dots,
Moving electrons,
Pulsing techniques,
Fast measurements

cross-section

top view

n n
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• Background: double quantum dot qubit

• Progress
– MOSFETS

– Valley splitting

– Quantum point contacts and quantum dots
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MOSFET Fabrication:
Front End

Red: n+ polysilicon (100m2)
Green: n+ Ohmics

Metal oxide semiconductor field effect transistors (MOSFETs)
will be fabricated in Sandia’s silicon facility (MDL)

Minimum features size = 180 nm.  Nanolithography is outside MDL.
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MOSFET Process Flow

• Silicon Wafer

• Gate Oxide Grown

• Source-Drain Lines Implanted

• Poly-silicon Deposited, Doped, and Patterned

• Contacts and Vias Formed

High Resistivity Silicon Wafer
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MOSFET Process Flow

• Resistivity Silicon Wafer

• Gate Oxide Grown

• Source-Drain Lines Implanted

• Poly-silicon Deposited, Doped, and Patterned

• Contacts and Vias Formed

100 Å gate oxide
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MOSFET Process Flow

• Resistivity Silicon Wafer

• Gate Oxide Grown

• Source-Drain Lines Implanted

• Poly-silicon Deposited, Doped, and Patterned

• Contacts and Vias Formed

n+100 Å gate oxiden+
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MOSFET Process Flow

• Resistivity Silicon Wafer

• Gate Oxide Grown

• Source-Drain Lines Implanted

• Poly-silicon Deposited, Doped, and Patterned

• Contacts and Vias Formed

1000 Å poly-Si

250 Å Nitride etch stop
100 Å gate oxide

n+n+
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MOSFET Process Flow

• Resistivity Silicon Wafer

• Gate Oxide Grown

• Source-Drain Lines Implanted

• Poly-silicon Deposited, Doped, and Patterned

• Contacts and Vias Formed

n+

2500 Å
SiO2

1000 Å poly-Si

250 Å Nitride etch stop

100 Å gate oxide n+

WSiO2

1000 Å   W

W

Process characterization used to optimize critical steps 
(e.g. C-V on gate oxide)

Many devices can be fabricated on the 6” wafers
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Initial 2DEG Transport

Ongoing MOSFET developement

Polysilicon can transition to 
insulator at low T.

Contact resistance is very high 
(300 k) for narrow implant 
lines.

Oxide induced 2DEG

MOSFET from Si substrate
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m3 add image from Angus paper

image of poly sheet and MOSFET

point out low T challenges

motivate alternate structures (even though Angus results suggest role of mobility is reduced)
mplilly, 1/6/2008
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FY08/09: less damage, smaller, different relationship to 
interface

• The good news: there are many existence proofs of well defined Si quantum dots
• Usually those dots are small d<65 nm 

– EBL can reach these sizes and CMOS nodes manufactures at 45 nm!

• Future direction: shrink size, improve damage & look at derivative structures like 
higher mobility SiGe/sSi => lots of permutations!

• Right now we are using the disorder dots to learn about electrometry (e.g., 
measurement technique & later circuit integration)

Angus, et al. Nanoletters 7, 2051 
(2007)

~ 40x60 nm lithographic dot [Angus et al.]~ 16 nm lithographic channel [Hofheinz et al.]

Vg [mV]
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• Background: double quantum dot qubit

• Progress
– MOSFETS

– Valley splitting

– Quantum point contacts and quantum dots
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Valley degeneracy  decoherence
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Valley Splitting in a Si-MOSFET
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Energy scales in magnetic fields
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Activation of Quantum Hall States
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Activation of Valley-Split Minima

• Linear trend seen previously for valley and spin-splitting
in many material systems

= 3
 = v - 2
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QPC Transport and Valley Splitting

• Evidence for 1D subband in large (~500 nm) gap unclear.
• New structures with 20 nm gaps are about to be measured

Valley splitting from 1D subband behaviour?
(S. Goswami et al., Nat. Phys. 2006)
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Summary

Thermal activation measurements of the valley splitting yields:

Device characteristics:

Peak mobility                         ~15,000 cm2/Vs 

mean free path ~300nm 

phase coherence length 1m (peak) 

V = V
0 + 0.5 (K/T) *Bperp

V
0 = 0.2 to 6 K (vary by device)

Future Experiments:

•RF resonance measurement
•Quantum point contacts (magnetic depopulation)
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• Background: double quantum dot qubit

• Progress
– MOSFETS

– Valley splitting

– Quantum point contacts and quantum dots
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Nanolithography

• Electron beam lithography defines 50 nm features (negative resist process)

• Polysilicon etching, insulator deposition using ALD and a second top gate 
are deposited in the uFab or CINT cleanrooms.

• Variations of desired structure can occur rapidly

Red: n+ polysilicon (100m2)
Green: n+ Ohmics
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“Front End” Processing: Si MOSFETs

2D electron system at Si-SiO2 interface

n+ n+
SiO2

n+ polysilicon SiN

SiO2

Si

W bond pads

Poly gate exposed for “Back End” processing 
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“Back End” nanolithography

1. Ebeam lithography
2. polysilicon patterning with plasma etch
3. Deposit 2nd dielectric: atomic layer deposition of Al2O3
4. Top gate: sputtered Al or ALD metal

n+ n+
SiO2

SiN

SiO2

Si

(1)

(2)

Issues: electrical characteristic of ALD, new etch out of MDL for poly

C-V used to characterize and optimize ALD process
Other oxides can be substituted if necessary
Working to incorporate EBL in silicon fab – allows better control
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Nanolithography Progress

Electron beam lithography

State-of-the-art Ebeam
writer capabilities

Plasma etching

70 nm poly linewidth after
EBL and etching.

NEB negative ebeam resist

MESA/uFab bromine 
plasma etch of polysilicon

Status

Point contact, dot and
double dot experiments
will use double dot gates
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Front End Devices with
180 nm Feature Sizes

Polysilicon gates can be used for 
either accumulation or depletion 

in addition to the global 
accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

G.M. Jones et al. PRL 89, 073106 (2006)
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Device Operation

Polysilicon gates can be used for 
either accumulation or depletion 

in addition to the global 
accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

Global top gate accumulating, 
polysilicon gates depleting to form a 1D 
Channel
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• No repeatable QPC steps

• Periodic, repeatable 
resonances near pinch-off

(Corrected for .1% drift over 12hrs)
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Cross Structure
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• Peak spacing corresponds to a 
dot diameter of ~65nm

• Longer period oscillations 
would correspond to a 25nm 
diameter
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“Disorder” Dots

• Apparent dot sizes fit neatly 
between polysilicon gates

• Reducing feature size 
should reduce the 
probability of overlapping 
with a disorder site

• Process improvement can 
increase general sample 
“cleanliness”

Possible Double 
Dot Configuration

Single Dot
Configuration
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1μm

Geometries

Distance between:
Adjacent Gates: ~350nm
Opposite Gates: ~650nm

QPC Gaps: ~ 150nm

MDL Cross Structure Double Quantum Dot Structure
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DQD Structure
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• QPCs on double quantum 
dot structure each exhibit 
similar behavior to cross 
structure
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Coulomb Blockade

• Diamond structures suggest conductance resonances are Coulomb 
Blockade
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Beating the Disorder

• Gate Oxide Growth

• Forming Gas RTA

• Plasma Etch

• ALD Al2O3 Deposition

Materials Improvement Size Reduction

Large gaps – disorder more important

Small gaps minimize role of disorder

200 nm

50 nmDisorder is inherently present but
from other SET work we know small
enough sizes minimize impact (50 nm).

Additional disorder induced by processing
may be repaired.
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Si handle (n-type back gate)

BOX

Strained-Si

ALD

Accumulation
Gate

SiGe

e-

Depletion
Gates

2nd Generation Nanoelectronics

e-

Si  

SiO2 

e-

P+P+

d ~ 100 nm?

More 
Straggle 

Tolerance

Tunable J

SiGe barriers Hybrid donor-dot devices

Replace disordered oxide 
with epitaxial SiGe barriers

Compatible with front-end/
back-end device flow

Use single donor implant technology
to place donors below gated dots

Donor location moves electron away
from the oxide interface
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Silicon Qubit Summary

• Highlights
– Surface accumulation mode approach complements existing efforts

• Possible benefits over other approaches & experimental platform to better 
study surface effects, “dopant free” devices & single dopant-surface 
coupling

– Experimental platform is available for custom nanoelectronics

• Progress
– MOSFETs fabricated for this work have relatively high mobility and can be 

used for both gated nanostructures and donor structures

– Valley splitting is present for the 2DEG and is expected to be larger for 
nanostructures

– Nanolithography for making point contacts and dots is underway.

• Transport nanostructures shows complicated blockade

• We anticipate significant improvements as size decreases and material 
improvements are implemented..


