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Hindenburg
Hydrogen Caused the Disaster

Hydrogen Molecular Diffusivity is 3.8 times that of CH4
Therefore it diffuses rapidly and mitigates any hazard

Hydrogen is 14.4 times lighter than air 
Therefore it rapidly moves upward and out of the way

We do not know the flammability limits for H2
Hydrogen heats upon expansion

This is the cause of auto-ignition (Joule-Thomson Effect)

Hydrogen Myths
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We just do not understand hydrogen combustion behavior
Hydrogen release is different than other fuels
Radiation is different than other fuels

Hydrogen hazards can be compared favorably to 
experiences with other hydrocarbon fuels

Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm
“… We need to be indemnified against a hazardous toxic hydrogen 
spill …” – Generic Insurance Company

Hydrogen Myths
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Lets get this out of the way!
Hindenburg Disaster

36 out of 97 died mostly 
trapped by the fire of 
fabric, diesel fuel, chairs, 
tables … (not hydrogen)
The craft did not explode 
but burned – and while 
burning stayed aloft 
(Hydrogen was still in the 
nose)
The craft fell to the 
ground tail first – the nose 
was still full of hydrogen
Radiation from the flame was red, orange 
and yellow – hydrogen flames emit in the 
near UV ~304 to 350 nm (OH* lines), 680 nm 
to 850 nm (vibrationally excited H2O), and 
~0.5 to 23 mm (water bands)
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“I guess the moral of the story is, don’t paint 
your airship with rocket fuel.”
-- Dr. Addison Bain

Lets get this out of the way!
Hindenburg Disaster (Cont’d)

The covering was coated with cellulose nitrate 
or cellulose acetate -- both flammable 
materials.  Furthermore, the cellulose material 
was impregnated with aluminum flakes to 
reflect sunlight. -- Dr. Addison Bain

A similar fire took place when an airship with 
an acetate-aluminum skin burned in Georgia

– it was full of helium!

Courtesy of Dr. Addison Bain and the National 
Hydrogen Association
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Small Unignited Releases: Momentum‐
Dominated Regime

In momentum-dominated 
regime, the centerline 
decay rate follows a 1/x 
dependence  for all gases.
The centerline decay rate 
for mole fraction 
increases with increasing 
gas density. 
The decay rate for H2 is 
significantly slower than 
methane and propane.
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Horizontal H2 Jet (dj=1.9 mm)
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Buoyancy effects are characterized by 
Froude number

Time-averaged H2 mole 
fraction distributions. 
Froude number is a 
measure of strength of 
momentum force 
relative to the buoyant 
force
Increased upward jet 
curvature is due to 
increased importance  
of buoyancy at lower 
Froude numbers.
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0.07 m.f.

0.08 m.f.

Ricou and Spalding entrainment law (J. Fluid Mechanics, 11, 1961)

Frden = Uexit /(gD(ρamb- ρexit)/ρexit)1/2
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Influence of buoyant force is quantified 
by the dimensionless Froude number

Jets from choked flows (Mach 1.0) are 
typically momentum-dominated.
Lower source pressures or very large 
pressure losses through cracks lead to 
subsonic, buoyancy-dominated plumes.
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Small Unignited Releases: Buoyancy Effects
Data for round H2 Jets (dj=1.91 mm)

At the highest Fr, 1/XCL
increases linearly with 
axial distance, indicating 
momentum dominates.
As Fr is reduced 
buoyancy forces become 
increasingly important 
and the centerline decay 
rate increases.
The transition to 
buoyancy-dominated 
regime moves upstream 
with decreasing Fr.
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Hindenburg
Hydrogen Caused the Disaster

Hydrogen Molecular Diffusivity is 3.8 times that of CH4
Therefore it diffuses rapidly and mitigates any hazard

Hydrogen is 14.4 times lighter than air 
Therefore it rapidly moves upward and out of the way

We do not know the flammability limits for H2Hydrogen 
heats upon expansion

This is the cause of auto-ignition (Joule-Thomson Effect)

Hydrogen Myths
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*(Chen and Rodi, 1980)

H2 Mole Fraction

Tank Pressure = 3000 psig, Hole Dia. = 0.297 mm
Exit Mach Number = 1.0 (Choked Flow)
Fr ~ O(104)

Flowrate = 20 scfm, Hole Dia. = 9.44 mm
Exit Mach Number = 0.1 (Unchoked Flow)
Fr ~ O(100)

0 0.5 1.0 1.5 2.0 X(m)

H2 Concentration Data from:
Dr. Michael Swain
Fuel Cell Summit Meeting
June 17, 2004

Start of 
Transition
Region (x = 0.3 m)

Choked & Unchoked Flows at 20 SCFM

Correlations based on experimental data
Start Intermediate Region

x/D = 0.5 F1/2(ρexit/ρamb)1/4

End Intermediate Region
x/D = 5.0 F1/2(ρexit/ρamb)1/4

F = Exit Froude No.  
= U2

exit ρexit/(gD(ρamb- ρexit))

Assuming gases at 1 Atm, 294K 
(NTP)

Red – 10.4%
Orange – 8.5%
Green – 5.1%
Blue – 2.6%

0.2

- 0.2

0

X(m)

R
(m

)

0 0.5 1.51.0

Start Transition Region -> x = 6.3 m



16 Sandia National Laboratories9/11/07

Hindenburg
Hydrogen Caused the Disaster

Hydrogen Molecular Diffusivity is 3.8 times that of CH4
Therefore it diffuses rapidly and mitigates any hazard

Hydrogen is 14.4 times lighter than air 
Therefore it rapidly moves upward and out of the way

We do not know the flammability limits for H2

Hydrogen heats upon expansion
This is the cause of auto-ignition (Joule-Thomson Effect)

Hydrogen Myths



17 Sandia National Laboratories9/11/07

Tube Dimensions,
cm

Limits, percent

Diameter Length

Firing
end

Lower Higher

Water Vapor
Content

Reference

7.5 150 Closed 4.15 75.0 Half-saturated 356
5.3 150 Open 4.19 74.0 Dried 94
5.3 150     Ņ 4.12 74.2     Ņ 94
5.3 150     Ņ 4.17 74.8     Ņ 94
5.0 150 Closed 4.15 74.5 Half-saturated 356
5.0 150 Open 4.00 72.0 Dried 133
4.8 150     Ņ 4.00 73.8     Ņ 38
4.5 80 Closed 4.10 -----     Ņ 56
4.5 80     Ņ 3.90 -----     Ņ 57

Upward Flame Propagation

Flammability Limits for H2

Tube Dimensions,
cm

Limits, percent

Diameter Length

Firing
end

Lower Higher

Water Vapor
Content

Reference

7.5 150 Closed 6.5 ----- Half-saturated 356
5.0 150     Ņ 6.7 -----         Ņ 356
2.5 150     Ņ 7.15 -----         Ņ 356
2.5 150 Open 6.2 ----- Saturated 271
2.5 -----     Ņ ----- 71.4 ------- 273
0.9 150     Ņ 6.7 65.7 Saturated 276

Horizontal Flame Propagation

Tube Dimensions,
cm

Limits, percent

Diameter Length

Firing
end

Lower Higher

Water Vapor
Content

Reference

21.0 31 Open 9.3 ---- Saturated 63
8.0 37 Closed 8.9 68.8 Half-saturated 324
7.5 150     Ņ 8.8 74.5 Ņ 356
7.0 150     Ņ ----- 74.5 Saturated 115
6.2 33 Open 8.5 ---- Partly dried 95
6.0 120     Ņ 9.45 ---- Ņ 325

Downward Flame Propagation Capacity, cc Limits, percentFiring
end Lower Higher

Water Vap
Content

Closed 9.2 ---- Saturated
    Ņ 8.5 67.5     Ņ
    Ņ 8.7 75.5     Ņ
    Ņ 5.0 73.5     Ņ
    Ņ 4.6 70.3     Ņ

Not stated
Not stated
1,000
810
350
35     Ņ 9.4 64.8     Ņ

Propagation in a Spherical Ves
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35     Ņ 9.4 64.8     Ņ
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78 investigations of hydrogen flammability 
limits were identified between 1920 and 1950.
Hydrogen flammability limits are well 
established.

78 investigations of hydrogen flammability 
limits were identified between 1920 and 1950.
Hydrogen flammability limits are well 
established.
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What is a Reasonable Flame 
Stabilization Limit?

Which volume fraction contour is relevant:
lean flammability limit? … 4% or 8%
detonation limit? … 18%
a fraction of the lowest lean flammability limit? 
… 1%

Ignition of hydrogen in turbulent jets 
occurs around 8% as measured by  
Swain.

This is consistent with the downward 
propagating limit of 8% 

Volume 
Fraction

unignited jet footprint
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Hindenburg
Hydrogen Caused the Disaster

Hydrogen Molecular Diffusivity is 3.8 times that of CH4
Therefore it diffuses rapidly and mitigates any hazard

Hydrogen is 14.4 times lighter than air 
Therefore it rapidly moves upward and out of the way

We do not know the flammability limits for H2

Hydrogen heats upon expansion
This is the cause of auto-ignition (Joule-Thomson Effect)

Hydrogen Myths
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Joule‐Thomson Effect

A rapidly expanding gas can increase 
or decrease in temperature. 

The direction and magnitude of 
temperature change is determined by 
the Joule-Thomson coefficient.

Definition: 
        μJT =  (δT/ δP)H = (∆T/ ∆P)H

Above the inversion temperature, the 
expanding gas temperature rises.

The inversion temperature of H2 is 
between 28 and 200 K (depending on 
pressure); at ambient temperature the 
expanding H2 increases in temperature.

For initial compressed gas pressure of 14 
MPa, the estimated temperature rise is 
approximately 6 C. 

At pressures up to 250 MPa, the maximum 
estimated coefficient is 0.53 K/MPa. Thus, 
at  H2 storage pressures of 100 MPa, the 
maximum temperature rise would be 
53 C, (gas temperature is only ~75C).

P1
Patm

High-pressure H2 Jet

Given the H2 auto-ignition 
temperature of 585 C, Joule-
Thomson heating is 
insufficient to cause ignition
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We just do not understand hydrogen combustion behavior
Hydrogen release is different than other fuels
Radiation is different than other fuels

“Hydrogen hazards can be compared favorably to 
experiences with other hydrocarbon fuels

Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm
“… We need to be indemnified against a hazardous toxic hydrogen 
spill …” – Generic Insurance Company

Hydrogen Myths
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H2 Flame Radiation

Orange emission 
due to excited 
H2O vapor
Blue continuum 
due to emission 
from   OH + H => 
H2O + hν
UV emission due 
to OH*
IR emission due 
to H2O vibration-
rotation  bands
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H2O emission in IR accounts 
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Thermal Radiation from Hydrogen 
Flames

Radiation heat flux data collapses 
on singe line when plotted against 
product τG x ap x Tf

4 .  
ap (absorption coefficient) is 
factor with most significant 
impact on data normalization

Previous radiation data for 
nonsooting CO/H2 and CH4 flames 
correlate well with flame 
residence time.
Sandia’s H2 flame data is  a factor 
of two lower than the 
hydrocarbon flame data.
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We just do not understand hydrogen combustion behavior
Hydrogen release is different than other fuels
Radiation is different than other fuels

“Hydrogen hazards can be compared favorably to 
experiences with other hydrocarbon fuels

Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm
“… We need to be indemnified against a hazardous toxic hydrogen 
spill …” – Generic Insurance Company

Hydrogen Myths
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Comparisons of NG and H2 Behaviors
Assume 3.175 mm (1/8 inch) dia. hole
Unignited jet lower flammability limits

LFL H2 - 4% mole fraction
LFL NG - 5% mole fraction

Flame blow-off velocities for H2 are 
much greater than NG
Flow through 1/8” diameter hole is 
choked 

Vsonic = 450 m/sec for NG (300K)
Vsonic = 1320 m/sec for H2 (300K)

Hole exit (sonic) velocity for NG is
greater than NG blow-off velocity

No NG jet flame for 1/8” hole
Hole exit (sonic) velocity for H2 is much 
less than blow-off velocity for H2

H2 jet flame present for 1/8” hole

Comparison of Blow-Off Velocities
for Hydrogen and Natural Gas

3.175 mm (1/8 inch) diameter hole
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Small Unignited Releases: Momentum‐
Dominated Regime

Decay rate for H2 mole 
fraction is slower than 
CH4.
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Distance on Jet Centerline to Lower Flammability Limit
for Natural Gas and Hydrogen

Tank Pressure       Hole Diameter               Distance to 5% Mole        Distance to 4% Mole Fraction. 
Fraction Natural Gas Hydrogen

18.25 bar   (250 psig)                 3.175 mm (1/8 inch)      1.19 m (3.90 ft) 4.24 m (13.91 ft)
1.587 mm (1/16 inch)     0.59 m (1.93 ft) 2.12 m (  6.95 ft)

207.8 bar (3000 psig)                3.175 mm (1/8 inch)       3.92 m (12.86 ft) 13.54 m (44.42 ft)
1.587 mm (1/16 inch)    1.96 m ( 6.43 ft) 6.77 m (22.21 ft)

Distance to the lower flammability limit for hydrogen 
is about 3 times longer than for natural gas

Unignited jet concentration decay 
distances for natural gas and hydrogen.
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Effects of surfaces ?

9/11/07

While both
flammable
envelopes lengths
are increased, the 
increase is more 
pronounced for CH4
jets than H2 jets
“Transient puffs”
seems to lead to a 
larger temporary 
increase of extent 
of horizontal H2
surface jets

H2

CH4
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H2 Jet at Re=2,384;  Fr = 268
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Radial profiles in H2 jet, d = 
1.91 mm, Re = 2384

Small Unignited Releases: 
Ignitable Gas Envelope

H2 flammability 
limits: LFL 
4.0%; RFR 75%
CH4
flammability 
limits:  LFL 
5.2%; RFR 15%
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Is there a myth about the 
minimum ignition energy?
Lower ignition 
energy of H2 is 
the lowest of 
the flammable 
gases at 
stoichiometry

Over the 
flammable 
range of CH4
(∼below 10%), 
however, H2 has 
a comparable 
ignition energy. 

9/11/07
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We just do not understand hydrogen combustion behavior
Hydrogen release is different than other fuels
Radiation is different than other fuels

“Hydrogen hazards can be compared favorably to 
experiences with other hydrocarbon fuels

Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm
“… We need to be indemnified against a hazardous toxic hydrogen 
spill …” – Generic Insurance Company

Hydrogen Myths
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Some people just do not get it!
H2

is not toxic, 
it is environmentally benign
We just borrow it -- (2H20 + E -> 2H2 + O2; then 
2H2+O2 -> 2H2O + E)

H2 is a fuel and as such has stored 
chemical energy

It has hazards associated with it
• It is no more dangerous than the other fuels that 

store chemical energy 
• IT IS JUST different; -- WE UNDERSTAND THE 

SCIENCE

We will learn how to safely handle H2 in the 
commercial setting just as we have for our 
hydrocarbon fuels.
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Nighttime photograph of ~40 MPa
large-scale H2 jet-flame test (dj = 5.08mm,
Lvis = 10.6 m) from Sandia/SRI tests.
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Presentation End
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Toss‐up
In practice, most of a hydrogen jet close to the release 
point is ignitable, and significant regions of the jet have 
ignitable concentrations higher than 10%

A hydrogen jets thus remains more likely to ignite than natural 
gas. 

For a slow and uniform build-up of hydrogen, however, 
the risks remain comparable provided detectors are 
used, depending on the location of the ignition source 
with respect to the leak

The low minimum ignition energy issue remains, overall, a 
concern.

9/11/07
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Jet Ignition Probability

• Methane jet into ambient air (Birch et. al., 1981)

r/D=0.0

r/D=1.5

r/D=1.8 Flammability Factor is defined as 
the cumulative probability of a 
potentially flammable mixture 
occurring at a given point. 

• Probability distributions 
quantify intermittent nature 
of turbulent flows.
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Dominated Regime
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Radial profiles of H2 mass fraction collapse onto a single curve in 
agreement with CH4 jet data.

Radial profiles in H2 jet, d=1.91 mm, Re = 2384
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Momentum‐Dominated Jets are within 
the Ignition Region

Xmax H2 Mole Fraction

Pressure = ~20 MPa (~3000 psig)
Hole Flowrate Xmax - Distance to Start of
Diameter 4% mole fraction Intermediate Region

3.175 mm   (1/8 inch)       9.718x10-2 Kg/sec               14.80 m (48.55 ft) 20.7 m  (67.9 ft)   
(2,463 ft3/min)*

1.5875 mm (1/16 inch)     2.430x10-2 Kg/sec 7.40 m (24.28 ft) 14.6 m  (48.0 ft)
(615.9 ft3/min)*

0.794 mm (1/32 inch)       6.075x10-3 Kg/sec 3.70 m (12.14 ft) 10.3 m  (33.9 ft)
(154.1 ft3/min)*

• Start Intermediate Region
x/D = 0.5 F1/2(ρexit/ρamb

) 1/4

F = Exit Froude No. = U2
exit ρexit/(gD(ρamb- ρexit))

*@NTP = 21o C (70o F), 101 kPa (14.7 psia)

Flow between exit and 4% mole fraction (LFL) remains in jet momentum dominated regions 
Choked flow conditions

Unignited Jet Separation Distance Length Scales


