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}’ Motivation

Monitoring of high-current signals is of interest for JTA end-event
confirmation, surveillance at WETL and development and production
at KCP

Optical current monitors have several advantages over conventional
current-voltage transformers including:

— Order-of-magnitude reduction in size, weight and power

— Immune to electromagnetic interference

— Simultaneous high-peak-current sensing (>2kA) and high-bandwidth (>200MHz)
operation

Optical current monitors are used commercially used for monitoring
ac power distribution of utilities, large systems, high power
consumption
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}’ Approach

« Our goal is to develop a compact, cost-effective
optical current monitor system with low-power
consumption using readily available fiber-optic
components from telecom industry

« Use commercially-available fiber-optic
components at 1.55 um to leverage telecom
industry, reduce costs

* Design reflection-geometry sensors to reduce
form factor, cabling and increase sensitivity with
double-pass transmission

* Develop sensor systems with low power
consumption and minimal system variability due
to fiber birefringence
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Magneto-optical materials
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Optical current monitors to date have predominantly used the non-reciprocal Faraday
rotation effect in magneto-optical crystals to measure changes in current-induced
magnetic field

« Rare-earth iron garnets (RIGs) have strong Faraday rotation properties. Bismuth-
doped iron garnets (BIG) and yttrium-doped iron garnets (YIG) are commonly used.

« Magnetic field vector parallel to optical axis produces Faraday rotation which generally
saturates at above some magnetic field value. Magnetic field also effects light
propagation and diffraction via scattering with magnetic domains.

* In general, the amount of rotation is a function of material, length and magnetic field
For telecom optical isolators. a saturating magnet is used to set rotation angle.
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Packaged reflective optical monitor

Custom packaged sensor was
fabricated to enable more
flexible testing compared to
free space components

Sensor consists of aspheric
lens for beam collimation and
1-mm-thick (confirm) BIG film
with a high-reflectivity coating
on the backside of the film

Allows for BIG material
characterization

Can connect in-line polarizers
to sensor
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DC polarization analysis with magnetic field
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DC measurements taken to
understand magneto-optical
properties of BIG film

Distance-controlled magnet and
gaussmeter used to provide and
measure externally applied
magnetic field

Measured dc changes as a
function of external magnetic field
in the following parameters:

— Faraday rotation
— Power transmission
— Degree of polarization (DOP)

ASE output power = 8mW

Sandia
National
Laboratories



F 2

 Measured rotation angle for
polarized (DOP=95%) and
depolarized (DOP=5%) light input
as a function of B parallel to the

optical axis.

* Polarized light produced by
inserting an in-line polarizer
between ASE source and 50/50
coupler input

« Linear change in rotation angle for

Faraday rotation
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* No appreciable change in rotation
angle for depolarized input
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Power scattering
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« BIG film has high insertion loss with no external magnetic field due to power
scattering from unaligned magnetic domains

 Reduced power scattering observed as a function of applied magnetic field
parallel to optical axis due to increasing orientation of magnetic domains

* Increase in power transmission shows H? dependence
« Relatively independent of input power, polarization and DOP
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Degree of polarization
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« Change in degree of polarization (DOP) shows periodic behavior with
DOP increase as high as ~40% for magnetic field parallel to optical axis

* Increase in DOP also observed for perpendicular magnetic field
« Change in DOP not observed for highly polarized light input case

)
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F 2

Faraday rotation mode (standard)

50/50

Sensor system considerations

) SMF coupler -
— Linear response IS = W Fiber
— ~10-20dB insertion loss from / Polarizer
polarizers necessitates higher Shotodetector
source power
DOP d 50/50
mode (new) o 1 swr P —
— Power and polarization source |~ * sensor
independent -
— High-speed polarization Polarization
. . . analyzer
analyzer required, limited
sensing range
50/50
«  Power scattering mode (new) ASE | _swr Fiber
. . . source >
— Simplest configuration / -
— Non-linear response rotodotootor
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e
o~ ' Transient current pulse testing
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- Capacitor discharge unit (CDU) produced current pulses up from 500A to
~3kA peak current with 150-ns rise times over Kapton stripline with 10-mm-

wide conductor

« Measure corresponding optical response from fiber sensor sandwiched
between Kapton lines

« Also evaluate optical response as a function of external magnetic field bias
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CVR signal (V)
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Transient sensor response

Optical response
observed up to
~2500V/3000A (limit of
CDU)

500-ns delay between
current waveform and
optical response

Slightly broader optical
response, negative
current swings and
secondary transients
not well resolved

Measure peak signal
amplitude of optical
response as a function
of peak current under
various external

magnetic field
conditions
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}’j Transient response with external magnetic field
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16 « Transient behavior vs. external magnetic field follows dc
- " 14 properties
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] | 4{ | ‘ 12 * At negative B, power drop observed corresponding to

current peak until current transient crosses minimum

+ Estimate this sensor position in Kapton stripline at
2500V/2944A corresponds to B=~450G

* For positive H, sensor response saturates for
2500V/2900A signal for B>150-200G

. Estimate that this BIG film saturates at total B=600-650G
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—M— parallel to optical axis

V
,‘#- ¥ Transient sensor response summary
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* Plot peak signal amplitude vs.

peak current for various external
magnetic field biases

* Higher positive bias increases

sensitivity but decreases dynamic
range

* Negative bias increases senstivitiy

for lower currents

 Follows dc characteristics
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P, 'Faraday rotation optical current sensor - comparison
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#’ Summary

* Presented dc and transient results on a novel non-polarizer-based optical
current monitor which could enable lower-power sensor systems

» Analyzed power scattering, DOP and Faraday rotation effects as a
function of external magnetic field

 Demonstrated a compact Faraday-rotation-based optical current monitor
with a more linear response

 For both sensors, current transients with 150-ns rise times where
detected up to peak currents of ~2500V/2900A — limited by CDU range

« Sensitivity in specific current ranges can be optimized by using external
magnet bias and/or adjusting sensor distance to stripline and optical axis
angle.

« Future work includes reducing the size of the overall sensor to enable
better sensor embedding and improve linearity of sensor response
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