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A Quote:

“The interaction of a single dipole with 
a monochromatic radiation field 
presents an important theoretical 
problem in electrodynamics.  It is an 
unrealistic problem in the sense that 
experiments are not done with single 
atoms or single-mode fields.”

L. Allen and J. H. Eberly, Optical Resonance and 
Two-Level Atoms, (Dover, New York, 1987).

J. H. Eberly

Originally published 1975

We attempt and experiment with the 
Unrealistic

2007 president of the Optical Society of America
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Outline

Background

Cavity QED based Quantum Computer
Strong Coupling in Cavity QED

Experimental Results
Single Atom Trapping
MOT production
Observation of cavity-assisted cooling 

Engineered Solution for Quantum Cavity QED

Conclusion
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Why Build a Quantum Computer?

Quantum Simulators

Factoring Large Numbers

Shor’s Algorithm
RSA Encryption

Unordered Search

Grover Algorithm

Classical:  O(N)
Quantum:  O(N1/2)

http://images.google.com/imgres?imgurl=http://www.lassp.cornell.edu/ardlouis/dissipative/richard_feynman.jpg&imgrefurl=http://www.lassp.cornell.edu/ardlouis/dissipative/Quantum_Mechanics.html&h=747&w=527&sz=35&tbnid=wad-kuJZEysJ:&tbnh=140&tbnw=98&hl=en&start=1&prev=/images%3Fq%3DRichard%2BFeynman%26hl%3Den%26lr%3D


Background Cavity QED Engineering Conclusion

DiVincenzo Criteria

http://qist.lanl.gov
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• Qubits

– hyperfine states of neutral Rb 

• Qubit storage

– optical dipole lattice trap

• Qubit interactions

– 2 trapped atoms inside optical 
microcavity

• Detection

– single atom inside cavity

F=1
F=2

A Cavity QED based quantum computer
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• Trapping with electric fields
– Neutral atoms

• E- field induces electric dipole

– Induced electric dipole attracted to 
regions of high field for red detuned traps

• Use focused laser beams

– Spontaneous photon scattering causes 
heating

• Use laser wavelength far from 
atomic resonance

 Yb Fiber laser 1064 nm
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“walking wave”
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m225SeparationMirror 

Probabilistic  Loading

• Atomic beams

• Falling cold atoms

• Catching the falling atoms 
with cavity modes

Deterministic Loading

• Trapping the atoms and 
transferring them into the 
cavity (GaTech, Bonn 
(Meschede))

Caltech
MPQ (Rempe)

How to get an atom in micro-cavity
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Jaynes-Cummings Hamiltonian
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Strong Coupling requires that controlled quantum 
dynamics occur faster than dissipations
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Cavity QED– Experimental Controls
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Decoherences:

Implies short cavities, 
length << 1 mm
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8mm

FORT Parameters

=1064 nm

P=4 W per beam

U~1 mK at cavity

U~ 100 K at MOT

~ 16,000 lattice sites 
between MOT and cavity
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Technical challenges – Single Atom MOT

Detection:
High NA Lens
Limit Scatter Noise 

MOT beams ~1-2 mm

Magnetic Gradient Generation:
To generate ~300 G/cm field
Large current supply ~ 400-500A
Water cooling to dissipate heat

Single atom chamber
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New Direction – Single Atom MOT
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Intra-cavity photon absorption

Numerical solutions for one atom’s master equation 
incorporating AC Stark shift of the optical trap
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Cavity Assisted Cooling

0c 

c p c   

0( )a p s     

1 set of cooling beams 
provide cooling in 3-D

Detune cavity-probe so 
that emissions that 
remove energy are 
favored

Nußmann et al., Nat. Phys (2005)
Murr et al., PRA (2006)
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Two atoms signals

Storage of an atom is 
approximately 
10 seconds

One atom signal

Three atoms signals

Probed with a cavity field 
an atom survives tstorage<1 
ms

Cooling increase storage 
time by a factor 10,000!!

Long Storage Times
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Cavity Cooling of single atoms

Beginning with MOT N=1, 2, 3, 4  we detect N=1, 2, 3, 4 in cavity
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Single atom scatter rate
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Ramping a Single atom through the Mode 70 times

Atoms moved in z dir at 4.40 mm/sv 

K. M. Fortier, et. al, Phys. Rev. Lett., 98, 233601 (2007).

Invited talk at CLEO/QELS 2008
QELS 01: Quantum Optics of Atoms, Molecules and Solids 
QTuB1, Deterministic Cavity QED with Single Atoms, Soo Y. Kim, Michael J. Gibbons, Kevin M. 
Fortier, Peyman Ahmadi, Michael S. Chapman; Georgia Tech, USA.
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What was hard and what can we do about it?

Cavity Construction
•Each cavity unique
•Very difficult to get 1 working

Optical Transport
•Introduces Gaussian problems
•AC stark shift problems

Number of lasers
•6 diodes lasers all locked to Rb

What was demonstrated What was hard

Loading 1 single atom in cavity
Long storage times

Moving a single atom in/out of 
cavity

What’s left to show a qubit
Initialize -> Optical Pump
Singe Qubit gates -> microwaves
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Magnetic trapping possibilities

Macroscopic coils:
Anti-Helmholtz Coils, Ioffe Pritchard

Chip solutions: currents + bias

I = 25 A, Bias = 10G
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Sandia/Stanford/CalTech Atom Chip

arXiv:cond-mat/0504686v1 [cond-mat.other] 26 Apr 2005
Schiedmayer group, U. Heidelberg

Lift-off Au wire sidewalls

Etched Al wire 
sidewalls

Blain, Stevens, Nakakura, SNL

Aspect group, Orsay
PRA  70, 043629 (2004)

Electroplated Au wire sidewalls

Potential disorders
current fluctuations
wire edge roughness
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Sandia’s Atom Chip testing apparatus.

Collaboration with H. Mabuchi at Stanford 
and JM Germia at UNM

D-subMacroU

Atom Chip

First Atom Chip shipped 
to Mabuchi on 26 Mar 08
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Loading of the Atom Chip

Loading Procedure
•Produce a Mirror MOT using Macro U and bias field
•Turn off lasers and store atoms in Macro U magnetic trap
•Transfer atoms from Macro U to atom chip

Biot-Savart solver provided by Chris Tiggis
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Microfabrication allows one to design engineered high finesse cavities.

Engineering Design Goals
• Open access Fabry-Perot cavity
• Finesse > 10,000
• Low mode volume
• Process compatible with Atom Chip 

fabrication

Scalable Cavity QED system

Un-scalable Cavity QED system

Hemisphere R = 68.6 μm
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AFM measurements at bottom of mirror
Units: nmrms; 1 µm SiO2 aperture

Post 1st plasma etch
AFM scan, Wafer 1
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Measured at 852 nm: 
Finesse = 1750
Expected Finesse = 2400
Cavity Length = 15 µm
Q = 60,000

Dielectric 
Mirror
R @ 780 nm 
= 99.97%

Si

Dielectric 
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= 99.92%
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Integrated Atom-optical Chip with magnetic transport

Deposit SiO2 and resist

Modeling Currently being done by Michael Pack 
as part of late start FY08 LDRD #08-1359 internal 
funding.
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Smarter and Simpler Laser Design

Georgia Tech SetupSandia Setup

5 AOMs
2 ECDLS
2 Slave Diode Lasers
4’ x 5’ optical footprint

DFB lasers -> mechanical noise insensitive
Frequency offset locking -> stabilize beatnote 
between two lasers

0 AOMs
0 Slave Diodes
4’ x 2’ optical footprint
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Potential Ways Sandia could impact cold atom research

The Sandia Atom Chip Foundry Model:
Utilize Sandia’s $465M MESA facility for atomic physics research
Success in past as part of DTO/IARPA Ion trap foundry

We want to form collaborations with top experimental groups

Sandia has capabilities in:
Modeling
Fabrication
UHV packaging
In house testing via atom trapping

Benefit to research groups: we will provide a chip that traps 
atoms
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First Neutral atomic Qubit in a 
cavity
Single atom stored in cavity
Optical pumping
Single Qubit Rotations -> Microwaves
Perform 100-1000 experiment on one atom

Sandia’s Neutral atom experiment
System will be baked out by mid May 2008
Laser construction completed June 2008
First laser cooled atoms August 2008
2nd Generation chip in design to incorporate 
cavities

Conclusion
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Classical Memory

Storage:1GB

Cost: $17.99

Quantum Memory alpha: 
GaTech

Storage: ~1 qubit

2 Optical tables, 1UHV System 

6 Diode lasers

1 Cavities

1 Yb Doped Fiber laser

3 Grad Students

Cost:  >> $17.99

First Transistor

Bell Labs, 1947

Classical vs Quantum Memory

Quantum Memory beta : Sandia

Storage: ~1 qubit

1 Optical tables, 1UHV System 

2 Diode lasers

1->n  Cavities

Cost:  >> $17.99



Background Cavity QED Engineering Conclusion

Acknowledgements

Georgia Tech

Prof. Michael Chapman

Soo Kim

Michael Gibbons

Paul Griffin

Jacob Sauer

Sandia National Labs

Dan Stick

Matt Blain

Peter Schwindt

Michael Pack

Chris Tigges

$$$

NSF
NASA

NSA

ARDA

$$$

NINE





Background Cavity QED Engineering ConclusionBackground Cavity QED Engineering Atom Interferometry Conclusion

Atom Interferometry offer amazing sensitivity

Appendix
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J.A. Sauer, M.D. Barrett, and M.S. Chapman, Phys. Rev. Lett, 87, 270401 (2001).

Background Cavity QED Engineering Atom Interferometry Conclusion

Improved Neutral Atom Storage Ring/Sagnac Interferometer

P. F. Griffin, A. S. Arnold, and E. Riis, arXiv:0803.0940v1 (2008).

Potential bumps limited 
atoms to only 7 
revolutions of the 
Nevatron

Using an induced current from 
a microfabricated pickup coil 
one can make a very smooth 
magnetic potential



Background Cavity QED Engineering ConclusionBackground Cavity QED Engineering Atom Interferometry Conclusion

Atom Interferometry offer amazing sensitivity

1110 100,000,000,000
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Quantum bit (qubits)
•Photon polarization
•Atomic electronic states

Classical Analog: 0, 1
Bloch Sphere
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Two qubit gates:
•harder

Single qubit gates
•Rotations on Bloch sphere
•Unitary 2x2 Matrices

H
1 11ˆ
1 12

H
 

  
 

Hadamard Gate

CNOT
A

B

1 0 0 0

0 1 0 0ˆ
0 0 0 1

0 0 1 0

CNU

 
 
 
 
 
 

Building block of Quantum Information: Qubits



Background Cavity QED Engineering Conclusion

An Introduction to Cold Atoms

Laser cooling (1975)
Hänsch & Schallow
Wineland & Demhelt
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Magneto-Optical Trap:  The workhorse of cold atom research.

MOT-Cold Atom Source

MOT (Cycling) Transition

Repump Transition

Energy

mg=0

me=-1

me=0

me=1



 

z’





L

Typical MOT
87Rb
N=1-106

T= 20 K
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Before we attempt the Unrealistic 
-- a review of where we’ve been

1997 – Chu, Phillips, Cohen-Tannoudji – Cooling Atoms with laser light
2001 – Wieman, Cornell, Ketterle – BEC (Predicted in 1927 produced 1995)
2005 – Glauber, Hall, Hänsch – Quantum Optics Theory, Frequency Comb

3 Nobel Prizes in 10 years!!

How Cold is Cold?
300K – Room Temp

77K – Liquid N2

3K – Big Bang Cosmic Background

300 mK – He Cryostat

30 mK – Dilution refrigerator

3 mK – Optical Cooling
140 K – Doppler Cooling (Rb)

20 K – Sub-Doppler Cooling

500 nK – Average BEC

100 pK – Coldest BECs
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Cavity Cooling of Many atoms
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Background Cavity QED Engineering Atom Interferometry Conclusion
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Magnetic Trapping

( ) F B FF B g m B    
   

Rubidium-87 ground state

Use magnetic fields to trap atoms

Trap weak field seeking states 
in magnetic potential 
minimums

F B FB g m BE     

, 1, 1 , 1,0 , 1,1 , 1, 2FF m   


