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Z experiments test opacity models that are
crucial for stellar interior physics

Solar predictions and observations do not agree

Solar structure depends on opacities that have
never been measured

Challenge: create and diagnose stellar interior
. conditions on earth

Z opacity experiments reach T ~ 156 eV

High T enables first studies of transitions
important in stellar interiors

Fe / Mg transmission at T ~ 156 eV
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#Hodern solar models disagree with observations.

Why?
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* measured boundary
Rcz=0.713 + 0.001

* Predicted R;,= 0.726
* Thirteen ¢ difference

“The CZ problem”

Bahcall et al, ApJ 614, 464 (2004).

Basu & Antia

Physics Reports 457, 217 (2008).

* Boundary location depends on radiation transport
« A 10-20% opacity change solves the CZ problem.

solar problem arises in the opacities or elsewhere.

* This accuracy is a challenge — experiments are needed to know if the
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The solar mixture opacity has contributions

from many elements

total

"

OpaC|ty Pro;ect calculatlons at Cz base
Badnell et. al. MNRAS 360, 458 (2005).
Mendoza et al., MNRAS 378, 1031 (2007)
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» K-shell oxygen, K-shell neon, and L-shell iron are important at the CZ base
*The complexity of L-shell iron demands special scrutiny
*The importance of any single element is diluted by the mixture

Example:
Changing Fe L-shell by 1.5x causes ~11% change in total mean opacity
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#!e charge state distribution depends on Te/ne and

it strongly affects both BB and BF transitions

Br at 50 eV, 3x10%! cm*? Fe at 156 eV, 6.9 x 102! cm?3

Ti-like to Fe-like N-like to Na-like

J.E. Bailey et al., JQSRT 81, 31 (2003). J.E. Bailey et al. PRL 99, 265002 (2007)
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* There is a qualitative change in transitions as vacancies in L-shell appear
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# Opacity experiment priority: produce the

charge states found in stellar interiors

Fe at 182 eV, 9 x 10 22¢cm*3

Radiation/convection boundary
0 like to Ne-like Fe predomlnate

Fe at 293 eV, 4 x 10 2 cm*3
Radius = 0.5 R,

O-like to Ne-like Fe predommate
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* Transitions in Fe with L-shell vacancies are important in the sun
- Laboratory experiments must produce high enough temperatures
to ionize Fe into the L shell
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} experiments investigate Fe L-shell

configurations that are important in the sun

b-f
(excited states)
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solar interior
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Z conditions

156 eV, 8x1021 cm-3
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Anatomy of an opacity experiment

spectrometer

[ [

S| 3

heating
X-rays

® backlighter

spectrometer

e —

S

; tamper (low 2)

T = exp —{ppx}

Comparison of unattenuated and attenuated spectra determines transmission

Model calculations of transmission are typically compared with experiments,
rather than opacity. This simplifies error analysis.
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Desirable features of an opacity experiment

e Sample spatial uniformity (thin, large lateral size, thick tamper)

° Minimal temporal variations during probe time (backlight short
compared to heating x-ray variation)

. Steady state (long duration heating x-rays)

. Temperature and density measurements (large wavelength
range to enable simultaneous low Z and high Z measurements)

° Sample areal density knowledge

e Accounting of sample self emission and experiment
background

Characteristics of Z x-ray source can promote quality
measurements

T.S. Perry et. al. Phys. Rev. E 54, 5617 (1996)
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Opacity experiments exploit the intense radiation
provided by the Z accelerator

K 4 cm \

A

> tungsten
40 m \ wire arrays CH, foam/

Previous work used samples ~5 cm from side of pinch to probe Te ~ 50 eV:
Phys. Plasmas 9, 2186 (2002).

JQSRT 81, 31 (2003)

Phys Rev E 72, 066405 (2005)

National

N i . o
~Eie_§$nt work places sample ~0.1 cm above pinch to probe higher Te ';I,‘ la:orl:tories




'
%gynamic hohlraum radiation source is created by

accelerating a tungsten plasma onto a low Z foam

1 nsec
snapshots

X-ray

camera

T radiating shock |

" [ radiating shock |
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sample

The radiation source heats and backlights the

sample 300: radiation hv > 1 keV:
~ [ temperature backlight 1
52005— photons 1
radiation = :
source 100:
0: .
-20 -10

time (nsec)
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%‘ The dynamic hohlraum backlighter effective
brightness temperature exceeds Tr ~ 300 eV
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The dynamic hohlraum backlighter measures
transmission over a very broad A range
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% Absorption spectra are obtained using large

working distance convex crystal spectrometers
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The spectral resolution exceeds A/6A =700

Sandia
= | Ntona

Laboratories




o

Absorption line profiles depend on Stark
broadening and saturation

optical depth
transmission
“optical depth

transmission
optical depth
transmission

795 730 7.35
A (A)

783 784 786 7.88
A (A)

Stark broadening increases and saturation decreases with principle quantum
number

This favors using high n lines

However, The high n lines are weaker and are measured less accurately

Strategy: use a range of lines, but account for measurement accuracy in

determining the overall uncertainty
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High quality absorption line fits are obtained using
detailed line broadening calculations

counts

Detailed line profile 2 =1.2 2
Voigt profile v2=55 y?
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The electron density is determined from the He-
like Mg line widths

Detailed line profiles calculated by
Roberto Mancini (U. Nevada Reno)
using MERL.:

n, =6.9+1.7 x 10 2 cm-3
Completely independent analysis by F.

Gilleron and J.C. Pain using
PimPamPoom:

0.5 1.0 1.5 2.0 2.5
n, (x 10#' cm*) n,=6.5x10 2! cm3
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Z opacity experiments reach T ~ 156 eV, two
times higher than in prior Fe research

Fe + Mg at T, ~ 156 eV, n_ ~ 6.9x102' cm-3

"~ MgXI | | B

22K’ l :

508 Wﬂ :

(7)) = ]

radiation E I @
source § 0.45 .
3 Fe XVI-XX &

007785 100 120 140
J.E. Bailey et al., PRL 99, 265002 (2007). A (Angstroms)

* Mg is the “thermometer”, Fe is the test element
» Mg features analyzed with PrismSPECT, Opal, RCM, PPP, Opas
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e plasma electron temperature is determined
from the (H-like)/(He-like) Mg line ratios.
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The inferred conditions are quantitatively
consistent with multiple independent models

Mg X N
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# Plasma T, and n, are reproducible to better than

+ 4% and + 25%, respectively.

- S L Six measurements per shot

' n,=6.9x102' cm=3
170F | weighted mean{
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- Black = Ly/Hep3 ] R

- Red=Ly/Hey :

- Blue = Ly/Hed 0'

140— < loo' ey ol - ~ T~ 0 o o =
shot # shot #

T,~ 156 + 6 eV

. n,~6.9+17x102 cm?3 o
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The spectrum is reproducible from shot to shot

Intensity
lllllllllllllllllllll

Z1650
21649

A (Angstroms)

* No scaling was applied for this comparison

» Average standard deviation of transmission = + 8%

*Transmission uncertainty = + 2.3%
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Possible experiment flaws can be evaluated from
transmission scaling with sample thickness

Potential experiment problems:

Sample may not be cartoon-like (pinholes, columnar structure)

Sample composition or areal density may not match specifications
(oxidation, contamination)

Sample self emission may alter apparent transmission
Conversion of film density to film exposure may be inaccurate
Background subtraction incorrect

Crystal defects may introduce artificial spectral features or mask
actual features

Gradients may alter transmission, becoming more important with
thicker samples

Lines may saturate

All of these problems cause transmission to deviate from expected
scaling with thickness : T, = T, x1x2)
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Transmission scaling with thickness
confirms experiment reliability

}.

r /A
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0 4'_ Red = thick sample N
L Blue = scaled thin sample -
n T1 - T2 (x1/x2) i

0.2 1050 1150 1250

hv (eV)

Un-desired effects such as self emission, gradients, transmission

__errors all tend to change the transmission scaling with thickness —
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A
%dern detailed opacity models are in remarkable

overall agreement with the Fe data
| 0 AR A,

Red = PRISMSPECT
J. MacFarlane, PRISM

1l III|III|III|IIIr

transmission

Red = MUTA
J. Abdallah, LANL

Red = OPAS
OPAS team, CEA
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}. experiments test opacity models that are

crucial for stellar interior physics

-Sotar-predictions-and-observations-donot-agree

Solar structure depends on opacities that have
never been measured

; Challenge: create and diagnose stellar interior
-\ | conditions on earth

Z opacity experiments reach T ~ 156 eV

High T enables first studies of transitions
important in stellar interiors

Fe / Mg transmission at T ~ 156 eV
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