LBL-37505

PROBOSCIS CONTAINER SHAPES FOR THE
USML-2 INTERFACE CONFIGURATION EXPERIMENT*

Paul Concus
Lawrence Berkeley Laboratory and Department of Mathematics
University of California, Berkeley, CA 94720, U.S.A.

Robert Finn
Department of Mathematics
Stanford University, Stanford, CA 94305, U.S.A.

Mark Weislogel
Space Experiments Division
NASA Lewis Research Center, Cleveland, OH 44135, U.S.A.

Presented at:
Ninth European Symposium
Gravity Dependent Phenomena in Physical Sciences
.Berlin, Germany
May 2-5, 1995

* This work was supported in part by the National Aeronautics and Space Administration under
Grant NCC3-329, by the National Science Foundation under Grant DMS91-069689, and by the Applied
Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under
Contract Number DE-AC03-76SF00098.

DISTRIBUTION oF THIS DOGUMENT 15 UMLBAITED JO{







DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefuiness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




PROBOSCIS CONTAINER SHAPES FOR THE
USML-2 INTERFACE CONFIGURATION EXPERIMENT

Paul Concus
Lawrence Berkeley Laboratory and Department of Mathematics
University of California, Berkeley, CA 94720, U.S.A.

Robert Finn
Department of Mathematics
Stanford University, Stanford, CA 94305, U.S.A.

Mark Weislogel
Space Experiments Division
NASA Lewis Research Center, Cleveland, OH 44135, U.S.A.

Introduction

Small changes in container shape or in contact angle can give rise to large shifts of liquid in a
microgravity environment. Such behavior suggests a means for managing fluids in microgravity and,
as one specific possible application, for the accurate determination of contact angle. In connection
with this application, we discuss certain containers designed for the forthcoming USML-2 Glovebox
Interface Configuration Experiment (ICE) and depict their behavior in preliminary drop tower
experiments. The containers are in the form of a circular cylinder with two diametrically opposed
“proboscis” protrusions. These shapes are based on the canonical (single) proboscis containers
introduced mathematically in {1], which have the properties in the absence of gravity that (i) fluid
rises arbitrarily high over the entire proboscis for contact angles less than or equal to a critical value
and (ii) the size of the proboscis can be made relatively as large a portion of the container cross
section as desired. These properties allow overcoming some of the practical limitations of wedge
containers; for the latter too little fluid may participate in the shift at a critical contact angle to
be easily observable.

We include below some background material from [2], where computational results for the
double proboscis containers are presented.

Governing equations

Consider a cylindrical container of general cross-section partly filled with liquid, as indicated in
Fig. 1. According to the classical theory, an equilibrium interface in the absence of gravity between
the liquid and gas {or between two immiscible liquids) is determined by the equations

1
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see, €. g., [3, Chap. 1]. In these equations {2 is the cross section (base) of the cylindrical container,
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Figure 1. Partly filled cylindrical container with base Q.

¥ is the boundary of £2, v is the exterior unit normal on X, and
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where || and |Z| denote respectively the area and length of Q and X; u(z,y) denotes the height
(single-valued) of the interface S above a reference plane parallel to the base, and 7 is the contact
angle between the interface and the container wall, determined by the material properties. The
volume V of liquid in contact with the base is assumed to be sufficient to cover the base entirely,
and, for the mathematical results, the cylinder is assumed implicitly to be arbitrarily tall so that
questions of behavior at a top do not arise. We restrict discussion to the case of a wetting liquid
0 < 7 < 7/2 (the complementary non-wetting case can be easily transformed into this one). For
7 = 7 /2, the solution surface is a horizontal plane for any cross-section.

Wedge container

For a cylindrical container whose section {2 contains a protruding corner with opening angle
2a, as in Fig. 2, the critical value of contact angle, at which behavior is discontinuous, is v0 = 7 —a.
For £ > 7 > 7 (and for fluid volume sufficient to cover the base) the height u can be given in
closed form as the portion of the lower hemisphere with center at O meeting the walls with the
prescribed contact angle . Thus the height is bounded uniformly in v throughout this range. For
0 < 4 < 70, however, the fluid will necessarily move to the corner and rise arbitrarily high at the
vertex, uncovering the base regardless of fluid volume. Details of this behavior can be found in [4],
the initial study that revealed the discontinuous behavior, and in [3], [5], and [6]. Procedures for
determining contact angle based on the phenomenon can give very good accuracy for larger values
of v (closer to w/2) but may be subject to experimental inaccuracy when 7 is closer to zero, as the
“singular” part of the section over which the fluid accumulates when the critical angle v, is crossed

then becomes very small and may be difficult to observe.
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Figure 2. Wedge container section.

Figure 3. Canonical proboscis container section showing three members of the continuum of
extremal arcs.

Canonical proboscis container

As a way to overcome the experimental difficulty, “canonical proboscis” sections were intro-
duced in [1]. These domains consist of a circular arc attached symmetrically to a (symmetric) pair
of curves described by

/p 2 _ .2 _ :
z=1/Ro* — 42 + Rosinyoln Ro -y 605702 ysm’)io +C, (4)
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and meeting at a point P on the z-axis, see Fig. 3. Here Ry, as well as the particular points of
attachment, may be chosen arbitrarily. The (continuum of) circular ares Tg, of which three are
depicted by the dashed curves in Fig. 3, are all horizontal translates of one such arc, of radius Rp
and with center on the z-axis, and the curves (4) have the property that they meet all the arcs I'g
in the constant angle . If the radius p of the circular boundary arc can be chosen in such a way
that Rp is the value of R, from (3) for the value 4 = 7y, then the arcs Iy become extremals for a
“subsidiary” variational problem [7] (see also [3, Chap. 6], [6]) determined by the functional

® = [[| - [Z7[cosy + |Q7[/ R, ()

defined over piecewise smooth arcs I', where £* and Q* are the portions cut off from ¥ and Q by
the arcs. In the case of the section of Fig. 3, ¥* and Q* lie to the right of the indicated arcs. It can
be shown that every extremal for ® is a subarc of a semicircle of radius Ry, with center on the side
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of I' exterior to 2%, and that it meets ¥ in angles > vy on the side of I' within Q*, and > 7 — v
on the other side of I' (and thus in angle v, within Q* whenever the intersection point is a smooth
point of X) [7],{3]. It is remarkable that whenever (3) holds, & = 0 for every Q* that is cut off in
the proboscis by one of the arcs I'p; see [1] and the references cited there.

In [1] a value for p was obtained empirically from (3) in a range of configurations, and it
was conjectured that the angle 4o on which the construction is based would be critical for the
geometry. That is, a solution of (1), (2), (3) should exist in Q if and only if ¥ > v¢. Additionally,
the fluid height should rise unboundedly as « decreases to 7o, precisely in the region swept out by
the arcs I'g (the entire proboscis region to the right of the leftmost arc I'y shown in Fig. 3). For
these conjectures, which form the basis of our proposed procedure and for which the mathematical
underpinnings were proved only partially in [1], complete mathematical proofs have been carried out
[8]. Specifically, it has been established that a unique value of p can be obtained for any specified
proboscis length and that the conjectured behavior of the fluid rise is the only one possible.

In [9] numerical solutions of (1), (2), (3) are depicted for canonical proboscis containers. Al-
though the fluid rise in the corner is not discontinuous as occurs for a planar wedge, it can be
“nearly discontinuous” in that the rise height in the proboscis is relatively modest until 4 decreases
to values close to vp, and then becomes very rapid at v = 7. Furthermore, since the proboscis can
be made relatively as large a portion of the section as desired, the shift can be easily observed for
a broad range of 7. Through proper choice of the domain parameters for the cases considered, an
effective balance can be obtained between conflicting requirements for contact angle measurement
of a sharp near discontinuity (for accurate measurement) and a sizable volume of fluid rise (for ease
of observation).

Double proboscis container

For the USML-2 experiment, double proboscis containers will be used. These containers are
similar to the single proboscis one of Fig. 3, except that there is a second proboscis diametrically
opposite to the first, in effect combining two containers into one. The values of yg in (4) generally
differ for the left and right proboscides, whose values of 7, we denote by 7 and g, respectively.
Similarly, we denote the values of Rq for the left and right proboscides by Ry and Rg. In order for
(3) to be satisfied for both proboscides, there holds

Rpcosyr = Ry cosvyr.

~ Specifying the desired points of attachment and choosing p, the radius of the circular portion of
the section, so that (3) is satisfied then yields the container section. (Such a p can be chosen for
the cases discussed here, but a proof that such a choice is possible for any proboscis lengths has
not yet been carried out for the double proboscis case.) The critical value for the container is the
larger of 77 and yg. For the containers considered here, we shall take yg > v, so that the critical
contact angle 7 for the container is equal to yg.

The upper half of the sections for the USML-2 experiment, superimposed on one another, are
shown in Fig. 4. The sections have been scaled so that the circular portions all have radius unity.
The meeting points of the vertices with the z-axis are, respectively, a distance 1.5 and 1.6 from the
circle center. For the sections depicted in Fig. 4 the values of 77, and g are respectively 20° and
26° for the uppermost section, 30° and 34° for the middle section, and 38° and 44° for the lowest
section.

For these containers the explicit behavior has not yet been determined mathematically in
complete detail, as it has for the single proboscis containers. However, numerical computations
in [2] and the known behavior of the single proboscis solution surfaces suggest that the behavior
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Figure 4. Three superimposed double proboscis container sections. From uppermost to lowest,
the pair of values of 7, for the left and right proboscides of each section are 20°/26°, 30°/34°, and
38°/44°.

will be as follows: For contact angles ¥ > 7o, as v decreases to g the fluid will rise bigher in the
right than in the left proboscis, with the rise becoming unbounded in the right proboscis at 7o.
For contact angles between 7z, and g the fluid will rise arbitrarily high in the right proboscis, but
the height in the left will still be bounded. For smaller contact angles the fluid will rise up both
proboscides arbitrarily high. By observing the liquid shift, one can then bracket the contact angle
relative to the values of yr and yg. For a practical situation in which the container is of finite
height with a lid on the top, the fluid will rise to the lid along one or both of the proboscides in
the manner described above (providing the fluid volume is adequate).

The selected values of 47, and g for the three containers are based on the value of approxi-
mately 32° measured in a terrestrial environment for the contact angle between the experiment fluid
and the acrylic plastic material of the container. The spread of values of contact angle covered by
the three containers is intended to allow observation of possible effects of contact angle hysteresis,
which is not included in the classical theory.

Typical behavior of the numerical solutions of (1), (2), (3) for the three double proboscis
container sections in Fig. 4, for a range of contact angles v, is illustrated in Fig. 5, which is taken
from [2]. The numerically calculated solution surface u(z,y) for (the upper half of) the 30°/34°
domain is shown for four values of contact angle, 60°, 50°, 40°, and 35°. (The critical value for
the domain is 7o = 34°.) Contour levels of the surfaces are indicated by the shading. As for the
single proboscis containers, the computations indicate that rise heights are relatively modest until
7 gets close to the critical value. At the container critical contact angle of 34°, the solution would
rise arbitrarily high in the right proboscis. For contact angles less than or equal to 30°, the fluid
would rise arbitrarily high in the left as well.

Drop tower tests

The results of preliminary experiments carried out at the NASA Lewis Zero Gravity Facility
5.18-Sec. drop tower are shown in Fig. 6 for the three vessels of Fig. 4 and for two different liquids.
The figure depicts the configurations after approximately five seconds of free fall. In the top row
of Fig. 6, the liquid is a 50% ethanol solution (the liquid to be used for ICE), for which the
equilibrium contact angle with the container wall was measured to be approximately 32°, with a
measured receding/advancing hysteresis interval of approximately 18° to 43°. In the lower row the
liquid is a 60% ethanol solution, for which the equilibrium contact angle is approximately 20°, with
a 12°-30° receding/advancing hysteresis interval.

In the approximately five seconds of reorientation from an initial 1-g configuration, an indica-
tion could be observed of what might occur under the longer-term period of weightlessness of the
orbiting Spacelab environment. For the 50% ethanol mixture, the fluid interfaces rise somewhat
along the proboscis portions of the vessel, with a noticeably greater rise in the right proboscis than
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Figure 5. Equilibrium interface for the 30°/34° (upper-half) double proboscis section for contact
angles 60°, 50°, 40°, and 35°. 7o = 34°.
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Figure 6. (Transient) drop tower configurations after = 5 sec. of free fall. Upper row:
50% ethanol solution. Lower row: 60% ethanol solution. From left to right in each row are
the 20°/26°, 30°/34°, and 38°/44° vessels, respectively.
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in the left for the 38°/44° vessel. For the 60% ethanol mixture the rise is more pronounced; in
the 44° proboscis the substantial rise suggests that the fluid may be proceeding to the top of the
container, in accordance with the mathematical results. In the other proboscides the less virgorous
rise could be attributed to reorientation forces being smaller when the departure of contact angle
from the critical value for the container is less. In a longer term low-g environment and with
astronaut “tapping” of the vessels to encourage overcoming of contact line friction and hysteresis
effects, we anticipate that information can be obtained as to what extent the mathematical and
numerical predictions based on the classical Young-Laplace theory can be observed in practice and
what the physical effects might be of factors not included in the classical theory.

ICE exﬁeriment

In addition to the three double proboscis containers depicted in Fig. 4, the USML-2 ICE
experiment has also a wedge container. This container is constructed to allow the interior wedge
angle 2¢ (see Fig. 2) to be varied, so as to permit observation of the wedge phenomenon for both
the advancing and receding cases.
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