
Adaptive Partitioning in High-Performance Computing
for Scientific Simulations using Adaptive Mesh

Techniques

Johan Steensland

Advanced Software Research and Development, Sandia National Laboratories,
P.O. Box 969, Livermore, CA 94550-9915, USA,

jsteens@ca.sandia.gov

Abstract. There are numerous partitioning techniques available within high-
performance computing for simulating physical phenomena with adaptive mesh
techniques. However, because of the dynamics inherent in these applications and
computer systems, manually selecting an optimal technique for a new simulation
can be a significant problem. Adaptive partitioning refers to repeatedly selecting,
configuring and invoking the optimal partitioning technique at run-time, based
on the current state of the computer and application. We investigate whether a
relatively simple implementation could automatically improve application per-
formance as compared to routinely using a seemingly good static technique in
a dynamic context. We use six real-life adaptive applications from different sci-
entific domains, five complementing partitioning techniques, and a large set of
parameters corresponding to a wide spectrum of computing environments. The
results show that even a simple implementation of adaptive partitioning can im-
prove performance. Thus, it eliminates the problem of selecting partitioning tech-
nique for new simulations.

Key words: AMR, load balancing, adaptive partitioning

1 Introduction

Adaptive mesh refinement (AMR) is widely used for numerical simulations of phys-
ical phenomena [6, 5]. When dynamic and localized solution features require higher
mesh resolution for obtaining sufficient numerical accuracy, the mesh adapts dynami-
cally. Parallel implementations of AMR potentially lead to realistic three-dimensional
models. However, it also presents significant challenges in dynamic resource allocation.
The parallel efficiency is limited by the effectiveness of the partitioner to partition and
distribute the underlying mesh to expose all inherent parallelism, minimize communica-
tion and synchronization overheads, and balance load. Because application adaptation
results in repeated modifications of the mesh, it is necessary to repeatedly repartition the
mesh to maintain efficient use of resources. The specific requirements for an effective
partitioning change with the mesh. By explicitly considering these dynamic conditions,
the scalability for large, realistic simulations could possibly be significantly improved.
We introduce adaptive partitioning, meaning dynamic and automatic switching of par-
titioning techniques, based on the current run-time state.

SAND2008-2082C

2 Johan Steensland

We investigate whether a relatively simple implementation of adaptive partitioning
could automatically improve application performance as compared to routinely using a
seemingly good static technique in a dynamic context.

2 Experimentation

Setup We use five partitioning strategies: recursive coordinate bisection (RCB) [2],
RCB plus re-mapping (RCB+M) [2], AdaptiveRepart [4] (PM) from ParMetis [3], the
HyperGraph algorithm (HG) from Zoltan [1], and an implementation the Hilbert space-
filling curve (HSFC) [2]. We use six real-world unstructured adaptive mesh applications
from a variety of scientific domains, with different sizes, geometries, structures, and
refinement patterns (see Table 1).

Application Element Dim Timesteps Avg #elmts Max #elmts
Quake Tetra 3D 6

������� ��� �
	
MachStem Quad 2D 109

��� ��� �
��� ���
LaserRaster Cube 3D 65 ����� � ����� ���
Convection Tetra 3D 73

�
��� � � �
Spheres Cube 3D 70

��� � 	 ��� �
	
ShockTurb Cube 3D 100

������� ��� �
	
Table 1. Table of applications

To investigate the impact a given sequence of partitioners has on the overall parallel
efficiency, we use the cost function [6]:

Cost � CCR � loadimb. � ITR � edgecut � migr. �
By applying the cost function to two different sets of data (average and max), we cap-
ture a wider gamut of conditions. To achieve a fictitious application and computing
environment that is unbiased and does not favor a certain metric or partitioner, we used
the settings CCR ������� "!$#%��� !&#�'"� �&(and ITR �)����� ��'�#*�&�+ �!$#*�&�+!$#�'�� �$(.

To better estimate the data migration cost associated with switching from one parti-
tioner to another, we use the penalty function [5], ,.-0/21 :

,.-0/213� 4 / for 5768:9 5<;' otherwise.

The data migration component in the cost function is then multiplied by ,.-0/21 .
For each application, we apply both the average and max data sets to the cost func-

tion with all permutations of / , CCR, and ITR. For all applications except Quake, the
number of partitions tested is 8 and 16. For Quake, we use 32 and 64.

Results Table 2 shows a small, but typical subset of a performance comparison of the
best adaptive partitioning and the best static algorithm for the particular application.

Adaptive Partitioning for Parallel Adaptive Mesh Simulations 3

ITR=HG MULT=0.25
App. Max, 0.25 Avg, 0.25 Max, 0.5 Avg, 0.5 Max, 1.0 Avg, 1.0

Quake32 (1,4)=96 (1,4)=100 (1,4)=93 (1,4)=100 (1,4)=64 (2,4)=100
Quake64 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=100 (1,4)=97

Mach8 (8,3)=95 (8,3)=102 (1,3)=94 (2,3)=101 (4,3)=88 (2,3)=87
Mach16 (2,3)=97 (2,3)=99 (2,3)=97 (4,3)=103 (4,3)=98 (8,3)=99

L-R8 (4,3)=93 (1,3)=104 (1,3)=92 (1,3)=102 (1,3)=88 (1,3)=92
L-R16 (2,3)=85 (2,3)=93 (2,3)=86 (4,3)=95 (4,3)=86 (8,3)=98
Conv8 (2,4)=96 (2,4)=96 (4,4)=93 (2,4)=87 (2,4)=84 (4,4)=69

Conv16 (2,4)=95 (2,4)=94 (2,4)=91 (2,4)=91 (4,4)=96 (4,4)=86
Sphe8 (2,3)=99 (4,3)=102 (2,3)=99 (8,3)=102 (4,3)=97 (1,3)=80

Sphe16 (2,3)=96 (4,3)=96 (2,3)=96 (4,3)=97 (2,3)=96 (1,3)=89
Shock8 (4,3)=100 (8,3)=100 (4,3)=100 (8,3)=100 (4,3)=102 (1,3)=85

Shock16 (2,3)=94 (8,3)=100 (2,3)=95 (8,3)=100 (4,3)=95 (2,3)=95
Table 2. Notation: For ��� �������
	 , � is the best penalty, � is the index of the best static
algorithm, where 1=RCB, 2=RCB+MAP, 3=ParMetis, 4=HyperGraph, 5=HSFC, and 	 is the
cost ratio of the best adaptive and the best static algorithm.

Figure 1 shows a typical performance comparison of all partitioners for a small subset
of the parameters.
Discussion The results show that even a simple implementation of adaptive partition-
ing can improve performance. Thus, it eliminates the problem of selecting partitioning
technique for new simulations.

3 Acknowledgments

Thanks to John Peterson at CFDLab, University of Texas, Richard Drake, James Over-
felt, and Karen Devine at Sandia, Charles Norton at Jet Propulsion Lab, NASA, and
Ralf Deiterding at Oakridge National Laboratories. Sandia is a multiprogram labo-
ratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94-AL85000.

References

1. U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A. Riesen.
Hypergraph-based dynamic load balancing for adaptive scientific computations. In Proc. of
21st International Parallel and Distributed Processing Symposium (IPDPS’07). IEEE, 2007.
Best Algorithms Paper Award.

2. Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan.
Zoltan data management services for parallel dynamic applications. Computing in Science
and Engineering, 4(2):90–97, 2002.

3. G. Karypis, K. Schloegel, and V. Kumar. PARMETIS - parallel graph partitioning and sparse
matrix ordering library, version 2.0. Univ. of Minnesota, Minneapolis, MN, 1998.

4. K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive
scientific simulations. In Proceedings of Supercomputing 2000, 2000.

4 Johan Steensland

R + P H S O A R + P H S O A R + P H S O A R + P H S O A R + P H S O A R + P H S O A
0

1000

2000

3000

4000

5000

6000

7000

Modeled Cost for Convection
 with p=8; CCR∈{0.25,0.5,1.0}; ITR=HG_MULT=0.25; penalty=2

Load imbalance
Communication
Data migration

Fig. 1. Performance for all partitioners including the theoretical optimal adaptive partitioning (O)
and the actual adaptive partitioning (A).

5. Johan Steensland. Reducing data migration in the context of adaptive partitioning for amr.
In Proceedings of The 19th IASTED International Conference on Parallel and distributed
computing and systems PDCS07, volume n, pages X–X. ACTA PRESS, 2007.

6. Johan Steensland and John Peterson. A study of dynamically adaptive partitioning for AMR.
In Proceedings of the International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’07). To appear.

