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By combining optimization, uncertainty analysis methods, and
surrogate (meta-) modeling in a single framework, DAKOTA enables
advanced studies with computational models.

« The DAKOTA framework and design concepts
* Tour of methods
» Strategies combining methods
— Surrogate-based optimization
— Optimization for uncertainty quantification
— Reliability-based design (OPT+UQ)

 Ongoing research

Slide (and research) credits: Mike Eldred (Pl),
Laura Swiler, Barron Bichon
http://www.cs.sandia.gov/DAKOTA/ @ Sandia
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DAKOTA Motivation
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Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions:

 What is the best performing design?
 How safe/reliable/robust is it?
« How much confidence do | have in my answer?

Nominal

4 DAKOTA h
optimization, sensitivity analysis,

Safety Margin

1.05

Optimized

parameter estimation,
\_uncertainty quantification

parameters
(design, UC,
state)

/Computational Model (simulation) )
 Black box: any code: mechanics, circuits,

response
metrics

> high energy physics, biology, chemistry
« Semi-intrusive: Matlab, ModelCenter, Python

\_ SIERRA multi-physics, SALINAS, Xyce  /
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DAKOTA C++/00 Framework Goals

» Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

* Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

* Facilitate scalable parallelism: ASCI-scale applications and architectures;
4 nested levels of parallelism possible

* Impact: tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)

Iterator

A
' .
ParamStudy UuQ
DoE Ceastod
[poACE—t NCssol——on =
Optimizer| INL2soL]
algorithms 1

hierarch Sandia
[DOT| [CONMIN| [NPSOL| INLPQL||OPT++ [COL.INY| DEGA| [EGO||DIRECT]| [TMF| @ {\Lagj;g?tlmes
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| ’J;
Paramstudy — sensitivity analysis — S
Lis (trsmcP—psTE
: Reliabilit
|DOE LeastSq —oR
A A
DDACE NLssod GN
Optimizer| NL2sol]
A
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Flexibility with Models

@riableslparameteg : user application ": / responses \
» design: continuous, : (Slfm Uk|a'39n) id . » functions: objectives,
discrete : system, Tork, direct, gri . constraints, LSQ

residuals, generic

» gradients: numerical,
analytic

 uncertain: (log)normal,
(log)uniform, interval,
triangular, histogram,

—P' optional approximation (surrogate) =—>
: » global (polynomial 1/2/3, neural net, :

beta/gamma, EV I, I, lll : kriging, MARS, RBF) « Hessians: numerical,
&state: continuous, / - ° Ir?iz?;gr?iyclzlr);nr:;:ilt;rdz;i‘tt;TANAl 3 Cnalytic, quasi /
discrete " ’ i X
integrate parameters into extract relevant metrics

application inputs

Flexible interface to user application (computational model/simulation)

* May be cheap (analytic function, linear analysis); typically costly
(finite element mesh with millions of DOF, transient analysis of
integrated circuit with millions of transistors)

* May run tightly-coupled, locally as separate process, in parallel

on a cluster, remotely on a distributed resource @ Sandia
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}- Optimization Methods

Gradient-based methods
(DAKOTA will compute finite difference
gradients and FD/quasi-Hessians if
necessary)

 DOT (various constrained)
« CONMIN (FRCG, MFD)

« NPSOL (SQP)

« NLPQL (SQP)

« OPT++ (CG, Newton)

Calibration (least-squares)
« NL2SOL (GN + QH)

« NLSSOL (SQP)

« OPT++ (Gauss-Newton)

Derivative-free methods

« COLINY (PS, APPS, Solis-Wets,
COBYLA2, EAs, DIRECT)

 JEGA (single/multi-obj GAs)

 EGO (efficient global opt via
Gaussian Process models)

 DIRECT (Gablonsky)
 OPT++ (parallel direct search)

 TMF (templated meta-heuristics
framework)

Sandia
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}' Uncertainty Quantification

A single optimal design or nominal performance
prediction is often insufficient for decision
making

* Need to make risk-informed decisions, based
on an assessment of uncertainty

Sandia
National
Laboratories
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}I Uncertainty Quantification Example

* Device subject to heating (experiment

or computational simulation)

* Uncertainty in composition/
environment (thermal conductivity,
density, boundary), parameterized by

Uy, ..

. Uy

 Response temperature T(u,, ..., uy)
calculated by heat transfer code

% in Bin
o = N w AN (6)]

Final Temperature Values

30

36

42

48

54 60 66 72 78 84

Temeprature [deg C]

ey ‘?e’-;:f%"f'%‘hﬁgk N
] é ' '
: " TN

ANERVAN

Given distributions of u,,...,u,,
UQ methods calculate
statistical info on outputs:

* Probability distribution of
temperatures

» Correlations (trends) and
sensitivity of temperature

* Mean(T), StdDev(T),
Probability(T 2 T ;..

Sandia
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p Uncertainty Quantification (UQ)

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

4 _ )

I:pu_t Varlablets u T utationaﬂ Variable
(physics parameters, P Performance
geometry, initial and Model ) M G
boundary conditions) easures G(u)

/(possibly given distributions)

Potential Goals:

. : ) a
* based on uncertain inputs, determine N samples _Output
variance of outputs and probabilities ‘ Distributions

of failure (reliability metrics)
>-< measure 1

« identify parameter correlations/local

sensitivities, robust optima VAN = o

« identify inputs whose variances — —
contribute most to output variance /N = measure 2
(global sensitivity analysis) - _J \_

» quantify uncertainty when using Typical method: Monte Carlo Sampling

National
Laboratories

calibrated model to predict @ Sandia



UQ Algorithms

Goal: bridge robustness/efficiency gap

LHS/MC, IS/AIS/MMALIS, Bootstrap,
QMC/CVT Incremental LHS Jackknife
1st/2nd-order local: Global: EGRA

MVFOSM/SOSM,

x/lu AMV/AMV?/

AMV+/AMV?2+, x/u

TANA, FORM/SORM

Wiener-Askey Cubature Adaptivity,
gPC: sampling, Wiener-Haar
quadrature,
pt collocation
Dimension
reduction
Second-order Dempster-Shafer Bayesian,
probability evidence theory Imprecise
probability
Importance factors, Main effects, Stepwise
Partial correlations | Variance-based regression Sandia
decomposition ational

boratories
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« The DAKOTA framework and design concepts

* Tour of methods

» Strategies combining methods
— Surrogate-based optimization
— Optimization for uncertainty quantification
— Reliability-based design (OPT+UQ)

* Ongoing research
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Strategies Enable

} Algorithm Combination

DAKOTA strateqgies enable flexible combination of
multiple models and algorithms.

* nested

» layered

e cascaded

e concurrent

» adaptive / interactive

Collaborative Hybrid

Optimization

Sequential Hybrid

Strategy

Uncertainty

OptUnderUnc

2"d Order Probability

Surrogate-based

UncOfOptima

Pareto/Multi-Start

Branch&Bound/PICO

Sandia
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}- Sample Algorithm Combinations

In addition to allowing rapid selection of single optimization
algorithms, DAKOTA enables advanced strategies, e.g.:

* Global/local optimization: perform (1) sampling, parameter
study, or global optimization; then (2) local (gradient or non-
gradient) optimization at each promising point.

» Surrogate (meta-model)-based optimization: use global
surrogates or local surrogates with trust region management to
reduce objective evaluation cost.

 Efficient Global Reliability Analysis (EGRA): reliability analysis
through combination of Gaussian Process surrogate, DIRECT
optimizer, and multi-modal adaptive importance sampling

« Optimization under uncertainty: robust or reliability-based
design, design with probabilistic constraints

Sandia
National
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Trust-Region

Surrogate-Based Optimization

Data Fit

LM

-2 -1 0 1 2
Data fit surrogates:

* Global: polynomial regress., splines,
neural net, kriging/GP, radial basis fn

* Local: 1st/2nd-order Taylor
« Multipoint: TPEA, TANA, ...

Data fits in SBO

* Smoothing: extract global trend
* DACE: number of des. vars. limited

» Local consistency must be balanced
with global accuracy

> Multifidelity > ROM

2

Multifidelity SBO

* HF evals scale better w/ des. vars.

2

S

o new area

)

-2 -1 0 1 2 -2 -1 0 1 2

Multifidelity surrogates: ROM surrogates:

LN !

Coarser discretizations, looser » Spectral decomposition (str. dynamics)
conv. tols., reduced element order POD/PCA w/ SVD (CFD, image analysis)
Omitted physics: e.g., Euler CFD, KL/PCE (random fields, stoch. proc.)

panel methods
ROMs in SBO

» Key issue: capture parameter changes
—E- ROM, S-ROM, tensor SVD

* Requires smooth LF model

National

* TR progressions resemk ]
Laboratories

Correction quality is crucial local, multipoint, or glob%

+ Some simulation intrusiQu.tg rgﬁr_oject
« May require design vect. mapping dia
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}- Calculating Probability of Failure

» Given uncertainty in materials, geomeftry, and
environment, determine likelihood of failure
Probability(T 2 T_,;..)

Final Temperature Values

annw

30 36 42 48 54 60 66 72 78 84

e Could perform 10,000
Monte Carlo samples
and count how many
exceed the threshold...

% in Bin
o = N w AN (6)]

Temeprature [deg C]

* Or directly determine input variables which give rise to
failure behaviors by solving an optimization problem.
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| Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

minimize ulnu

subject to G(u) =2

—=
T

=]
w
T

A Region of u

values where 8l T ¢
/ Tz Tcritical map cr.iti.cal 04
7 probability

(=]
[==]

(=]
-

=]
(=]
T

=
tn

T ‘ T

Cumulative Probability
o
P

O MY

O x-/u-space AMY

O x-fu-space AMV+ & FORM

+ 100k Latin hypercube samples

=]
%]
T

=]
%]
T

01

Response Value



i Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...
« Limit state linearizations: use a local surrogate for the limit state G(u) during
optimization in u-space (or x-space):
u-space AMV: G(u) = G(pu) + VuG(pu) (u = pu)
u-space AMV+: G(u) = G(u*) + V,G(u*)L'(u — u*)
u-space AMV2+:  G(u) = G(u*) + Vu,G(u*)T(u — u*) + %(u —u")IVv2G(u*)(u — u*)

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in
approximation/optimization — results here mostly use SR1 quasi-Hessians.)

* Integrations (in u-space to determine probabilities): may need higher order
for nonlinear limit states

: n—1
p(g E‘: z} = (I’{_-{ff:df} 1
Ist-order: , 2nd_order: { p= ®(—73) S—
{ p(g > z) = "I'{_-'{ff:cdf} ! ( - E Y, 1+ ."Ijﬁ'?'

curvature correction

 MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point (NIP)

 Warm starting (for linearizations, initial iterate for MPP searches): speeds
convergence when increments made in: approximation, statistics requested, design

variables Sandia
@ National
Laboratories
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}J Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

* Created to address nonlinear and/or multi-modal limit states in MPP

searches.
125
10 GP surrogate -+
8] T
6
4_'
] True tn
21
0 :
0 2 4 6 8 10 12
121 0.06

Expected
Improvement

70.05

-10.04
-10.03
-10.02
—10.01

0 2 4 6 8 10 12
From Jones, Schonlau, Welch, 1998
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Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

* Created to address nonlinear and/or multi-modal limit states in MPP
searches.

Gaussian process model of reliability limit state with
10 samples 28 s/a_Qples

N\ s

Ve exploit

=] explore

_ Sandia
] 5 National
: Laboratories
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AKOTA/EGRA: Superior Performer

D

First-Order py
(% Error)

Second-Order py
(% Error)

Sampling py
(% Error, Avg. Error)

0.11798 (276.3%)
0.11798 (276.3%)
0.11798 (276.3%)
0.08642 (175.7%)

0.02516 (-19.7%)

0.02516 (-19.7%)
0.02516 (-19.7%)
0.08716 (178.0%)
0.02516 (-19.7%)

0.11798 (276.3%)

0.03127 (0.233%, 0.929%)
0.03136 (0.033%, 0.787%)

Reliability Function
Method Evaluations
No Approximation 66
x-space AMV?2+ 26
u-space AMV?2+ 26
x-space TANA 506
u-space TANA 131
x-space KGO 50.4
u-space EGO 49.4
True LHS solution 1M

0.03135 (0.000%, 0.328%)

* Most accurate local method under-predicts p; by ~20%

« EGO-based method accurately quantifies probability of failure within
1% with similar number of function evaluations.

* Pro: LHS accuracy + MPP efficiency without gradients, good tail

probability resolution

» Con: Exploratory samples wasteful, GP can break down for large
number of samples or independent variables

Sandia
National
Laboratories



- Shape Optimization of Compliant MEMS -

* Micro-electromechanical system (MEMS): typically made from silicon,
polymers, or metals; used as micro-scale sensors, actuators, switches,
and machines

« MEMS designs are subject to substantial variability and lack historical
knowledge base. Materials and micromachining, photo lithography,
etching processes all yield uncertainty.

* Resulting part yields can be low or have poor cycle durability

* Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

variable mean std. dev. | distribution
. FANTE -0.2 pm 0.08 normal
bistable S 11 I:I a 4.13 normal
MEMS o L '

switch

Sandia
National
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Tapered Beam Bistable Switch:
Performance Metrics

Bl | \ tapered beam [ ] anchor
| 13 design vars d:
= Wi, I_i, ei $<—— s— shuttle
. _, > -/actuat—i'[n force
§ -1.
> 2
-25 W, s
i | \
-35
-4 & A £ A A / v . di
L, L, L, L, |_new tapered beam design %s;g!
R—T T80 50 10 20 0 . jszgwaoo
X (1 m)
force )
! Switeh _ _ Typical design specifications:
key relationship: force i .
Frnax] . - actuation force F_; reliably 5 uN
vs. displacement !
- bistable (F_,> 0, F_, <0)
] E2 E*\/ « maximum force: 50 <F__ <150
1
> » equilibrium E2 < 8 ym
(¢ .
o displacem .
L * maximum stress <1200 MPa
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Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

min f(d) + Wsyu(d)

Optl| -«

{d}‘

- UQle, __|

{u} {R,}
[Simj

(nested paradigm)

{Su}

S.t.

91 < g9(d) < gu
h(d) = hy

d; < d < dy

a; < A;su(d) < ay
Ae sy(d) = ay

Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

max E [Finin(d,x)]
[s.t. 2 < Becar(d)
50 < E[Fmaz(d,x)]

E[Ex(d,x)]
E [Smaz(d, x)]

IAIATA

8
3000

150

E

F

force

A switch
contact

13 designvars d: W, L, g,
2 random variables x: AW, S,

Ez E3

min

QQ

displacem
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O Finds Optimal & Robust Design

|-

!
B
1
1
i
!
!
H
H
H
!

displacement (um)

— MVFOSM
=t AMVEE
""" target force

6.5 7

7.5 8

displacement (um)

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:

metric MVFOSM AMVZ+ FORM
l.b. name u.b. | initial d° | optimal d*, | optimal d% | optimal d%

E [Finin] (uN) -26.29 -5.896 -6.188 -6.292

2 I} 5.376 2.000 1.998 1.999

50 E [Frnaz] (uN) 150 68.69 50.01 57.67 57.33

E[E2] (um) 8 4.010 5.804 5.990 6.008

E [Smaz] (MPQ) 1200 470 1563 1333 1329
AMV?+ verified B 3.771 1.804 - -
FORM verified g 3.771 1.707 1.784 -

&)
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}' Research Directions @

DAKOTA’s power comes partially from numerous iterative methods
and flexible interfaces, but largely from its flexibility in combining
methods for uncertainty-aware analysis of expensive simulations

Work in progress...

* Polynomial Chaos and Stochastic Collocation
(and their use in design optimization: tailor opt to UQ method)

* Model calibration under uncertainty,

» Better epistemic methods, including for OUU

* General weighted nonlinear least squares for calibration problems
» Advanced surrogate models and ROMs

* Improved user interface and XML problem specifications

Thank you for your attention!

briadam@sandia.gov |
http://www.sandia.gov/~briadam @ o

Laboratories
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