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& Why AD?

Some algorithms need gradients and perhaps
Hessians. Possibilities...

e Finite-differences

4+ work with black boxes

— but can be expensive

— and introduce truncation error.
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& Why AD? (cont’d)

e Analytic derivatives

_|_
_|_

no truncation error

avallable from symbolic-computation
packages

tedious and error-prone if done by hand
can be inefficient

possible interfacing issues
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# Why AD? (cont’d)

e Automatic Differentiation (AD)

_|_

_|_
_|_

no truncation error (uses chain rule)

reverse mode = eflicient for gradients
sometimes easy to use

can take lots of memory

possible interfacing issues

if-then-else: which side at break?
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# Forward and Backward

Two modes:

e Forward: recur partials (w.r.t. independent

variables) of operands at each operation
+ good locality and memory use

+ for n = 1 can compute high-order deriv’s
(Taylor series)

— slow for large n (# indep. vars)
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& Forward and Backward (cont’d)

e Backward: recur partials of final result

w.r.t. iIntermediate results

+ f and Vf in time proportional to
computing f

— memory use proportional to number of

operations
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& Forward and Backward (cont’d)

e Backward: recur partials of final result

w.r.t. iIntermediate results

+ f and Vf in time proportional to
computing f

— memory use proportional to number of

operations
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= ; Implementation Approaches
Implementations must augment function
computations with recurrence of partial
derivatives. Logically equivalent to obtaining

and manipulating an expression graph.

e Preprocessor consumes source code (e.g., C
or Fortran) and emits modified source.

o Examples: AUGMENT, ADIFOR,
ADIC
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& ; Implementation Approaches (cont’d)

e Operator overloading in some programming

languages, such as C++ or Fortran

o Examples: ADOL-C, ADOL-F, Sacado

¢ Modeling language (manipulates expression
graph behind the scenes)

o Examples: AMPL, GAMS

Many tools exist; http://www.autodiff.org
lists 29.
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o ,,-amplementation: Reverse-mode Inner Loops

Reverse-mode derivative propagation: all

multiplications and additions. Op’ns of form
a<«—a-+bXxc

AMPL /solver interface lib.:

do *d->a.rp += *d->b.rp * *d->c.rp,
while(d = d->next);

Sacado:

do d->c—->aval += *xd->a *x d->b->aval;

while((d = d->next));
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//
. Sacado

Trilinos = collection of open-source tools for

scientific computing in C++; see

http://trilinos.sandia.gov

Sacado = Trilinos AD package (templated)

e Forward AD = rewrite of FAD package ot

templates.

e Reverse AD = RAD (written

Di Césaré and Pironneau; uses expression

by dmg).

e Taylor poly’s (n =1 fwd) by |
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Jacobian Eval. (a)
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o ; nlc for Optimized Gradients

Seeing larger expression graphs gives more

opportunity for optimizing the computation.

o ADIC optimizes per C statement, mixing
forward and reverse, in overall forward

evaluation.

e nlc program sees entire function evaluation
in .nl file, emits C or Fortran avoiding
needless ops.
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# Timings on Protein-Folding Example
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Compiled C, no grad. 2.92e-5 1.0

Sacado RAD 1.90e4 6.5
nlc 4.78¢-5 1.6
ASL, fg mode 9.94e-5 34
ASL, pfgh mode 1.26e—4 4.3

Eval. times, protein folding (n = 66)

Eval style sec/eval rel.
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< ; Hessian-vector Products

Several approaches...

e RAD o FAD: ADvar<SFad<double,1> >

e FAD o RAD: SFad<ADvar<double>, 1>

e Custom mixture: Rad2: :ADvar<double>

e AMPL /solver interface library: find,
exploit partial separability automatically:

flx) =20 (Zj fisz‘j@) -
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& Hessian-vector timings
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Eval style sec/eval  rel.
RAD o FAD 4.70e-4  18.6
FAD o RAD 1.07e-3 42.3
ASL, Custom mixture 2.27e—4 9.0
ASL, pfgh mode 2.03e-5 1.0

Seconds per Hessian-vector prod
f = %a:'TQaz,n = 100.
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i ; Concluding Remarks

e 1 many possibilities, each with advantages
and disadvantages. Having several tools

helps, especially for treating hot spots.

o C+- like looking through a keyhole;
Seeing more expression graph can help.

e AD can save human time.

e AD may give faster, more accurate
computation.

e Room for more tools to optimize evals. @yes
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p Some Pointers

http://www.autodiff.org
http://trilinos.sandia.gov

http://www.sandia.gov/~dmgay
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