On Automatic Differentiation
for Optimization

David M. Gay

Optimization and Uncertainty Estimation
http://www.sandia.gov/~dmgay
dmgay@sandia.gov
+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

_
\ -
SAND2008- 3059C
SIAM Conference on Optimization, May 2008

National Nuclear Security Administration under contract DE-AC04-94A185000.

h

1

Sandia
National
Laboratories

= o
Outline

e Why AD?

e Forward and Backward

e Implementation approaches
e Sacado package in Trilinos
e Hessian-vector products

e Concluding remarks

S =w
g8
g=

V\ '
& Why AD?

Some algorithms need gradients and perhaps
Hessians. Possibilities...

e Finite-differences

4+ work with black boxes

— but can be expensive

— and introduce truncation error.

_
-~
& Why AD? (cont’d)

e Analytic derivatives

|
|

no truncation error

avallable from symbolic-computation
packages

tedious and error-prone if done by hand
can be inefficient

possible interfacing issues

- O
Why AD? (cont’d)

e Automatic Differentiation (AD)

|

|
|

no truncation error (uses chain rule)

reverse mode = eflicient for gradients
sometimes easy to use

can take lots of memory

possible interfacing issues

if-then-else: which side at break?

_
X A
Forward and Backward

Two modes:

e Forward: recur partials (w.r.t. independent

variables) of operands at each operation
+ good locality and memory use

+ for n = 1 can compute high-order deriv’s
(Taylor series)

— slow for large n (# indep. vars)

_
- &
& Forward and Backward (cont’d)

e Backward: recur partials of final result

w.r.t. iIntermediate results

+ f and Vf in time proportional to
computing f

— memory use proportional to number of

operations

_
- &
& Forward and Backward (cont’d)

e Backward: recur partials of final result

w.r.t. iIntermediate results

+ f and Vf in time proportional to
computing f

— memory use proportional to number of

operations

~— 4 // d
= ; Implementation Approaches
Implementations must augment function
computations with recurrence of partial
derivatives. Logically equivalent to obtaining

and manipulating an expression graph.

e Preprocessor consumes source code (e.g., C
or Fortran) and emits modified source.

o Examples: AUGMENT, ADIFOR,
ADIC

r\ / /{/ '

»
& ; Implementation Approaches (cont’d)

e Operator overloading in some programming

languages, such as C++ or Fortran

o Examples: ADOL-C, ADOL-F, Sacado

¢ Modeling language (manipulates expression
graph behind the scenes)

o Examples: AMPL, GAMS

Many tools exist; http://www.autodiff.org
lists 29.

Sandia
m National)
Laboratories

10

V\ / //‘

i
o ,,-amplementation: Reverse-mode Inner Loops

Reverse-mode derivative propagation: all

multiplications and additions. Op’ns of form
a<«—a-+bXxc

AMPL /solver interface lib.:

do *d->a.rp += *d->b.rp * *d->c.rp,
while(d = d->next);

Sacado:

do d->c—->aval += *xd->a *x d->b->aval;

while((d = d->next));

h

11

//
. Sacado

Trilinos = collection of open-source tools for

scientific computing in C++; see

http://trilinos.sandia.gov

Sacado = Trilinos AD package (templated)

e Forward AD = rewrite of FAD package ot

templates.

e Reverse AD = RAD (written

Di Césaré and Pironneau; uses expression

by dmg).

e Taylor poly’s (n =1 fwd) by |

12

“ric Phipps.

‘ andia
aboratories

13

Jacobian Eval. (a)

500 -
[—8— FD
.E 400}| —©— FAD
S 300}
T
[¢D)
= 200¢
ks
£ 100}
O L L N
0 100 200 300 400
DOF Per Element
Jacobian Eval. (b)
800 J - -
- —8—FD
S —6—FAD
o 6007
@)
o
(@)
ir 400¢
[¢D)
=
© I
5 200 0.94
x

O L L N
0 100 200 300 400
DOF Per Element

Relative Flop Count

Sacado results in Charon

Adjoint Eval. (c)

Relative Eval. Time

—#— RAD

7 L L 1
0 100 200 300 400
DOF Per Element

Adjoint Eval. (d)
5.85 - -

—#— RAD

0 100 200 300 400
DOF Per Element

Sandia
m National
Laboratories

~— 4 // d
o ; nlc for Optimized Gradients

Seeing larger expression graphs gives more

opportunity for optimizing the computation.

o ADIC optimizes per C statement, mixing
forward and reverse, in overall forward

evaluation.

e nlc program sees entire function evaluation
in .nl file, emits C or Fortran avoiding
needless ops.

14

_
~.
Timings on Protein-Folding Example

15

Compiled C, no grad. 2.92e-5 1.0

Sacado RAD 1.90e4 6.5
nlc 4.78¢-5 1.6
ASL, fg mode 9.94e-5 34
ASL, pfgh mode 1.26e—4 4.3

Eval. times, protein folding (n = 66)

Eval style sec/eval rel.

andia

e 2

y
// .
< ; Hessian-vector Products

Several approaches...

e RAD o FAD: ADvar<SFad<double,1> >

e FAD o RAD: SFad<ADvar<double>, 1>

e Custom mixture: Rad2: :ADvar<double>

e AMPL /solver interface library: find,
exploit partial separability automatically:

flx) =20 (Zj fisz‘j@) -

16

"
& Hessian-vector timings

17

Eval style sec/eval rel.
RAD o FAD 4.70e-4 18.6
FAD o RAD 1.07e-3 42.3
ASL, Custom mixture 2.27e—4 9.0
ASL, pfgh mode 2.03e-5 1.0

Seconds per Hessian-vector prod
f = %a:'TQaz,n = 100.

andia

e 2

y
i ; Concluding Remarks

e 1 many possibilities, each with advantages
and disadvantages. Having several tools

helps, especially for treating hot spots.

o C+- like looking through a keyhole;
Seeing more expression graph can help.

e AD can save human time.

e AD may give faster, more accurate
computation.

e Room for more tools to optimize evals. @yes
18 ories

A
p Some Pointers

http://www.autodiff.org
http://trilinos.sandia.gov

http://www.sandia.gov/~dmgay

19

