
An Innovative Storage Stack Addressing Extreme
Scale Platforms and Big Data Applications

Jay Lofstead∗, Ivo Jimenez†, Carlos Maltzahn†, Quincey Koziol‡, John Bent§, Eric Barton¶
∗Sandia National Laboratories gflofst@sandia.gov

†University of California, Santa Cruz ivo@cs.ucsc.edu, carlosm@soe.ucsc.edu
‡HDF Group koziol@hdfgroup.org
§EMC john.bent@emc.com
¶Intel eric.barton@intel.com

Abstract—The DOE Extreme-Scale Technology Acceleration
Fast Forward Storage and IO Stack project is going to have
significant impact on storage systems design within and beyond
the HPC community. With phase 1 of the project complete, it
is an excellent opportunity to explore the complete design and
how it will address the needs of extreme scale platforms. This
paper examines the overall design. Each layer of the proposed
stack is discussed in some detail along with cross-cutting topics
that impact multiple layers, such as transactions and metadata
management. We also describe the proposed features to better
support some classes of big data applications.

This paper not only provides a timely summary of impor-
tant aspects of the design specifications but also captures the
underlying reasoning that is not available elsewhere. With this
information, we encourage the broader community to understand
the design, intent, and future directions to foster discussion
guiding phase 2 and the ultimate production storage stack
based on this work. An initial performance evaluation of the
early prototype implementation is also provided to validate the
presented design.

I. INTRODUCTION
Current production HPC IO stack design is unlikely to

offer sufficient features and performance to adequately serve
extreme scale science platform requirements. Adding to the
problem complexity is the variety of Big Data problems users
want to address using these platforms. Trying to address both
of these domains is a daunting problem.

To address these challenges, a joint effort between the
US Department of Energy’s Office of Advanced Simulation
and Computing and Advanced Scientific Computing Research
commissioned a project to develop a design and prototype
for an IO stack suitable for the extreme scale environment.
It will be referred to as the Fast Forward Storage and IO
(FFSIO) project. This is a joint effort led by Lawrence Liv-
ermore National Laboratory, with the DOE Data Management
Nexus leads Rob Ross and Gary Grider as coordinators and
contract lead Mark Gary. The participating labs are LLNL,
SNL, LANL, ORNL, PNL, LBNL, and ANL. Additional
industrial partners contracted include the Intel Lustre team,
EMC, DDN, and the HDF Group. This team has developed
a specification set [8] for a future IO stack to address the
identified challenges. The first phase recently completed with a
second phase currently getting underway as of early 2014. The
core focus of the first phase was basic functionality and design.
While an idealized potential system would be the perfect target
architecture, the reality of budgets has tempered many of the
decisions. For example, extensive availability of NVRAN or

SSDs on all of the compute nodes is currently not economically
feasible limiting some of the potential design choices. With this
in mind, the second phase will refine this design incorporating
fault recovery and other features missing from the first phase.

The complete design seeks to offer high availability, byte-
granular, multi-version concurrency control. Through the use
of a copy-on-write style mechanism reducing storage space
and writing time requirements, multiple versions of an object
can be stored efficiently. By assuming the client interface will
be through an IO library, a more complicated interface offering
richer functionality can be incorporated while requiring only
minimal end-user code changes. Managing most data access
in a platform-local layer rather than requiring writing to cen-
tralized storage will better support the performance and energy
requirements of extreme scale application compositions.

Overall, the architecture shifts from the idea of files and
directories to containers of objects. This shift avoids the bottle-
necks related to the POSIX files and directories structure such
as the serialization of file creation, the limitation and impact
of the number of files in a directory, and the limited semantics
of a byte stream. Instead, the new interface focuses on high-
level data models and their properties and relationships. This
concept permeates the entire IO stack.

In addition to addressing the traditional scientific workload,
this project seeks to expand functionality to better support Big
Data type applications. The key idea is to support Arbitrary
Connected Graphs (ACGs) such as those used in Map-Reduce
systems. Key system features are introduced to efficiently
support these computing models in addition to the typically
bursty IO loads of more traditional HPC applications.

!"#$%&'()*(+,-.'%/,0,%/"1"2"*-%!"#$%!&'("')%*+,%"-)%.$&'"/0%

Fast Forward I/O Architecture 

3*+450'%
6*7'2%

89:%6*7'2%
;5(20%;5<'(%

=0*(,#'%
='(1'(2%

Application Lustre Server 
>&8?8:%

89:%@*(A,(7"-#%3B"'-0%
Lustre Client 

(DAOS+POSIX) 

89:%@*(A,(7"-#%='(1'(%

I/O Dispatcher 

6CDE>%

!/@F%
C:G% &:=8H%

!&3%@,I(".%
>&8%9%&*(0,B2%

=E6%@,I(".%
:@J/%

Fig. 1. Target Architecture and Component Mapping
At a more detailed view, the various layers of the IO stack

each contribute different functionality. The architecture (Fig-
ure 1) incorporates five layers, some of which have potentially

SAND2014-4032C



optional components. The top layer is generally a high level IO
library, such as the demonstration HDF5 library [23]. It is in
dark blue. The intent is to only have access to the storage stack
through such an API to manage the complexity of working
with the lower layers and to enable advanced functionality
that would require more direct user intervention. This layer
incorporates the necessary features for ACGs from a end-user’s
perspective.

Below the user API is an IO forwarding layer that redirects
IO calls from the compute nodes to the IO dispatching layer (in
black). This IO forwarding layer is analogous to the function
of the IO nodes in a BlueGene machine or the passive data
staging processes demonstrated previously [15], [2]. The next
two layers have considerable functionality. The IO dispatcher
(IOD) serves as the primary storage interface for the IO stack
(in green) and offers features like Burst Buffers to insulate the
persistent storage array from bursty IO workloads. Ideally, the
IOD layer’s functionality can be optional based on available
hardware and compute power provided on the IO Nodes
(IONs). Much of the functionality offered at this layer would
shift either up or down the stack as discussed in detail below.
The Distributed Asynchronous Object Storage (DAOS) layer
serves as the persistent storage interface and translation layer
between the user-visible object model and the requirements
of the underlying storage infrastructure. It is intended to be
the traditional file system-like foundation on which everything
else is built with no dependence on any technologies specified
above it (in dark pink and yellow). For example, the IOD
layer with or without burst buffers is not required for DAOS to
operate properly. Instead, the DAOS layer can handle all of the
IO operations from the user API layer, albeit with the potential
performance penalty of manipulating the shared, persistent
storage array. At the bottom is the Versioning Object Storage
Device (VOSD) (in purple). It serves as the interface for storing
objects of all types efficiently for each storage device in the
parallel storage array. Think of this layer as the physical disk
interface layer. In terms of Lustre, this would replace the API
on individual storage devices with an interface friendlier to the
containers of objects and transactions/epochs concepts used in
the higher layers.

Along with analysis of the published design documents, a
discussion of the design philosophy representing the overall
intent is presented. This information represents information
that may or may not have been written down, but is the
intent of ultimate product. These ideas are presented to give
a fuller picture of where the project is going rather than
dwelling on any limitations of the published documents. This
is most important to illustrate how different concepts will work
across layers since that information is spread across multiple
documents and may lack a cohesive overall view.

The rest of the paper is organized as follows. A brief
overview of related work is presented first in Section II. Sec-
tion III discusses the programmatic interface end users will see
when interacting with the storage array. This will be discussed
in the context of the HDF5 based example library used for the
functionality demonstration. Section IV briefly discusses the
motivation and proposal for the IO forwarding layer. Section V
describes the IO Dispatcher layer and the broad functionality
it offers. This will detail the pieces of the layer that are
potentially optional and mention the cross-cutting features
discussed in a later, cross-cutting section. Section VI discusses
how the DAOS layer functions. As with the IOD layer, the

cross-cutting features will be mentioned, but discussed more
fully in the cross-cutting section. The VOSD layer is discussed
in Section VII. In particular, the mapping between the DAOS
and VOSD layers are explored as it pertains to the physical
storage. Next is an exploration of cross-cutting features like
transactions and metadata management in Section VIII. Since
these and other features are spread across multiple layers,
it makes more sense to discuss them independently once an
understanding of the overall structure has been presented. A
demonstration of the functionality is presented in Section IX.
This shows that the prototype system based on the proposed
design can function. The paper is concluded in Section X with
a summary of the broad issues covered in the paper.

II. RELATED WORK
Many projects over the last couple of decades have sought

to address some challenging aspect of parallel file system
design. The recent rise of “Big Data” applications with differ-
ent characteristic IO patterns have somewhat complicated the
picture. Extreme scale machines will be expected to handle
both the traditional simulation-related workloads as well as
applications more squarely in the Big Data arena. This will
require some adjustments to the underlying system for good
performance for both scenarios.

The major previous work is really limited to full file
systems rather than the mountain of file system refinements
made over the years. A selection of these other file systems
and some features that make it relatively unique are described
below.

Ceph [24] is a distributed object store and file system. It
offers both a POSIX and object interface including features
typically found in parallel file systems. Ceph’s unique striping
approach uses pseudo-random numbers with a known seed
eliminating the need for the metadata service to track where
each stripe in a parallel file is placed.

PVFS [7] offers optimizations to reduce metadata server
load, such as a single process opening a file and sharing
the handle. It has been commercialized in recent years as
OrangeFS.

Lustre [6] has become the de facto standard on most major
clusters offering scalable performance and fine-grained end-
user and programmatic control over how data is placed in the
storage system.

GPFS [20] offers a hands-off approach for providing good
performance for scaling parallel IO tasks and is used exten-
sively by its owner, IBM.

Panasas [18] seeks to offer a dynamically adaptive striping
system that detects the need for additional stripes for perfor-
mance and adjusts the file layout as necessary.

Other file systems, like GoogleFS [9], address distributed
rather than parallel computing and cannot be compared di-
rectly. The primary difference between distributed and parallel
file systems is the ability of the file system to store and
retrieve data simultaneously from multiple clients, in parallel,
and treat the resulting collection of pieces as a single object.
Distributed file systems rely on a single client creating a file,
but distributing the set of files across a wide array of storage
devices. The other, popular distributed file system of note
is HDFS [21] that is distributed as part of Hadoop. These
other file systems are mainly of interest in the context of
the ACG features of FFSIO and will be discussed more in
Section VIII-D.



III. END-USER API LAYER
Since the proposal specifies a high-level IO API will be

the primary end-user interface for programmatically interacting
with the FFSIO stack, the team used the HDF5 API and
leveraged the Virtual Object Layer (VOL) for the initial design
and implementation demonstration. This also serves as a good
test determining what are strictly necessary extensions to
an existing IO API to support the new functionality. The
additional functionality, such as transactions, can be ignored
for legacy implementations, but these applications will not be
able to take advantage of the asynchronous IO support inherent
to the new API. The additions comprise (Figure 2):

1. API extensions to support new functionality pro-
vided by the FFSIO project. This includes calls
for managing asynchronous request lists, perform-
ing asynchronous operations, creating and managing
transactions, end-to-end data integrity, and data type
and functions to support the ACG functionality more
efficiently than the current API.

2. Function shipping from Compute Nodes (CN) to IO
Nodes (ION). This provides the application developer
with the capability of sending computation down to
the IONs and get back results and perform other
operations such as indexing and data reorganization
for more efficient retrieval.

3. Analysis Shipping from CN to IONs or DAOS nodes.
This is similar to 2 but instead of returning the result
over the network, it gets stored on the nodes and
pointers to it are returned.

Function and Analysis Shipping are part of the cross-
cutting features and are discussed in Section VIII-C.

HDF5 [23] has a versatile data model offering complex
data objects and metadata. Its information set is a collection
of datasets, groups, datatypes and metadata objects. The data
model defines mechanisms for creating associations between
various information items. The main components of HDF5 are
described below.
• File: In the HDF5 data model, the collection of data

items stored together is represented by a file. It is an
object collection that also describes the relationship
between them. Every file begins with a root group “/”
serving as the “starting-point” in the object hierarchy.

• Group: A group is an object allowing association be-
tween HDF5 objects. It is synonymous with directories
in a file system. A group could contain multiple other
groups, datasets, datatypes or attributes within it.

• Dataset: HDF5 datasets are objects representing ac-
tual data or content. Datasets are arrays with poten-
tially multiple dimensions. A dataset is characterized
by a dataspace and a datatype. The dataspace captures
the rank (number of dimensions) and the current and
maximum extent in each dimension. The datatype
describes the type of its data elements.

• Attribute: Attributes are used for annotating HDF5
objects. They are datasets themselves and are attached
to existing objects.

A. Virtual Object Layer
The Virtual Object Layer is an abstraction mechanism

internal to the HDF5 library [23]. As shown in Figure 2 it
is implemented just below the public API. The VOL exports

an interface that allows writing plugins for HDF5 enabling
developers to handle data in ways other than writing to storage
in an HDF5 format. Plugin writers provide an implementation
for a set of functions and are trusted to provide the proper
semantics for the new environment. For example, data staging
could be implemented in the VOL layer by replacing writing
to disk in the HDF5 format to sending data to a data staging
area using some messaging mechanism.

For this project, rather than the default writing to disk in the
HDF5 format, the VOL is used to interact with the IOD layer
and the different concepts it offers without requiring all of the
functionality be exposed to users. For example, the containers
and objects concept is transparently mapped to the files and
datasets existing HDF5 users are familiar with. This reduces
the difficulty porting applications to the new IO stack.

Fig. 2. Architectural view of the VOL abstraction mechanism

The IOD VOL plugin serves as the bridge between HDF5
and the IOD or DAOS Layer (Figure 2). The application calls
the HDF5 library while running on the system’s compute
nodes. Using the VOL architecture, the IOD VOL plugin uses
a function shipper (RPC library) to forward the VOL calls
to a server component running on the IO nodes (IONs). This
function shipping is the IO Forwarding Layer discussed briefly
in Section IV. Once the calls arrive at the IO nodes, they are
translated into IO Dispatcher (IOD) API calls and executed at
the IONs.

B. HDF5 to FFSIO Mapping
Since HDF5 has traditionally offered an interface focused

on files and the internal data types, such as datasets, these
concepts must be mapped onto the proposed FFSIO data
storage concepts. At a high level, think of the HDF5 types
mapping to FFSIO types as follows: file → container, dataset
→ array, and groups and attributes → key-value store.

In Section V below, the FFSIO types are described in more
detail.

IV. IO FORWARDING LAYER
The IO Forwarding layer offers a mechanism to reduce

the concurrency impact of the massive process count on the
storage stack. A current trend mixing MPI with a threading
library like OpenMP is addressing the same issue, but limited
to handling the parallelism on a single node rather than
multiple nodes. Projected extreme scale platforms will have
far fewer storage stack end-points per compute process in
which to receive requests and data. By reducing the number of
simultaneous requests, delays can be reduced. This has been



demonstrated for the file open operation with Lustre [12] and to
some degree for accessing the storage devices themselves [13].
The BlueGene platform incorporated dedicated hardware to
perform this role. The proposed functionality for this layer,
beyond managing the number of connections to the IOD layer,
is to implement function shipping from the compute nodes to
the IO nodes.

For the basic HDF5 calls, this will work the same as
how the Nessie staging [11] shifted the collective IO data
rearrangement calls to a reduced number of processes. The
prototype implementation will only support accessing func-
tionality already deployed to the IO nodes through an RPC
mechanism. This initial implementation will use Mercury [22]
to access the remote functionality. For dynamically defined
functions, a different system will be required leveraging some-
thing like C-on-demand [1] or some other dynamic deployment
and compilation or an interpreter system.

V. IO DISPATCHER LAYER
Strictly speaking, the IO Dispatcher layer and included

functionality, such as burst buffers, is optional. All of the func-
tionality, such as function and analysis shipping, transaction
management, and managing asynchronous data movement can
be handled by other portions of the stack. For an extreme scale
platform, the IOD layer will be an essential pressure relief
valve for the underlying persistent storage layer. By making it
optional, the proposed stack can be deployed more easily on
smaller clusters or for those with more constrained budgets.
For simplicity, the rest of this section will describe a full stack
including all of the proposed IOD components.

The core idea for IOD is to provide a way to manage
IO load that is separate from the compute nodes and the
storage array. Communication intensive activities, such as data
rearrangement, can be moved to the IOD layer reducing the
number of participants and message count. IOD has three
main purposes. First, the burst buffers work as a fast cache
absorbing write operations that then trickles out to the central
storage array. It can also be used to retrieve objects from the
central storage array for more efficient read operations and
offers data filtering to make client reads more efficient. Second,
it offers the transaction mechanism for controlling data set
visibility and to manage faults that could expose an incomplete
or corrupt data set to users. These transactions are local to the
IOD layer until persisted to the DAOS layer eliminating the
need for burdening the persistent storage with transient data.
Third, data processing operations can be placed in the IOD.
These operations are intended to offer functionality like data
rearrangement and filtering prior to data reaching the central
storage array.

While these ideas are not necessarily new, they are new
twists on best of class efforts for these technologies. For
example, offloading the collective two-phase data sieving from
the compute nodes to reorganize data has proven effective at
reducing the total time for writing data due to fewer partic-
ipants involved in the communication patterns [11]. Beyond
these broad items, there are many important details some of
which are examined in more detail below.

A. FFSIO Data Model Types
With the shift from a directories and stream-of-bytes files

model to the container and object model, some description is
required to better understand how these concepts are being
used as well as the raw benefits.

1) Container: As mentioned above, the concept of a
container is similar to that of a file in a traditional file
system. However, rather than being in a directory structure,
each container essentially is stored in a hash-space allowing
direct access to any container without regard to the current
organizational context of the file system. For example, there is
no need to navigate a directory hierarchy to name a particular
container.

Functionally, a container plays the same role as a file in that
it holds a collection of presumably related data intended to be
accessed and manipulated as a unit. Since this is extended from
HDF5 files, the container could also be viewed as a directory
tree of objects where each directory entry specifies either a
sub-directory (group) or some data or attribute.

2) Key-Value Store: This is the base type for the container.
Since the container represents something akin to HDF5 files,
everything is stored within a hierarchical namespace. The root
namespace is represented by the base key-value store and
contains a list of all of the objects for this portion of the
namespace as well as additional key-value objects representing
sub-groups for the hierarchy. Each of those key-value store
objects works identically.

Attributes are stored in a key-value store object, but use the
multi-dimensional array and blob objects to store the values
for the attributes.

3) Multi-Dimensional Array: By treating arrays as a special
case separate from blobs, additional opportunities are enabled.
For example, by knowing that an object is an array, proper
slicing of that array onto IO nodes can be done without
involving higher levels of the IO stack.

4) Blob: All other data is stored as a stream-of-bytes
without regard to the actual data type.

B. Multi-Dimensional Array Data Distribution
For both IO performance and to aid in analysis and other

data processing, the multi-dimensional array object can be
split across multiple IO nodes. Each piece of this array is
called a shard. The idea of sharding is to store a logically
complete portion of a data set on a single storage target.
This is similar in concept to the HDF5 hyperslab. The FFSIO
stack supports sharding the data in the default or some other
structured way as well as “re-sharding” based on application
needs. For example, reordering the data so that a different
dimension is the “fast” dimension may greatly improve the
performance of a subsequent data analytics task. A common
scenario where this is common is a Fortran code (column-
major) writes data for a C code (row-major) to analyze. The
IOD API supports the following sharding strategies:
• contiguous. fixed chunking, distributed in a round-

robin fashion across the IO nodes.
• chunked. same as above but with irregular (sparse)

chunking.
• user-defined. either contiguous or chunked, but user

specifies where to place each individual shard.
It is possible to request the transformation of an object’s

physical layout to other formats, having multiple copies of the
same objects in multiple formats if desired. Also, the user can
pre-fetch objects from the storage cluster into the IO nodes or
read them directly from the storage cluster. At the semantic
level (HDF5), indices can be created for datasets resulting in
being able to read through an index instead of directly from
the base array.



All of these distinct alternatives result in having many
different ways for executing the same analysis task. In the
subsequent discussions, we consider only data-movement op-
timization, i.e., sending the analysis code as close as possible
to the data. In practice, this means we focus on identifying
sharding of datasets and execute code accordingly over the
appropriate shards.

C. IO Nodes
IOD processes are hosted on the IO nodes that interface

a general compute area with the storage array. The IO nodes
handle requests forwarded by the scientific applications, poten-
tially integrate a tier of solid-state devices to absorb the burst
of random or high volume operations, and organize/re-format
the data so that transfers to/from the staging area from/to the
traditional parallel file system can be done more efficiently.
It also has the capacity to execute analysis on data recently
generated by simulation applications running at the compute
nodes, but not persisted to the storage array. As the data arrives,
re-organization and data preparation can be applied in order to
anticipate the execution of analytical tasks.

Fig. 3. Extreme Scale Architecture

A common configuration for this type of deployment is
shown in Figure 3. The designated IO nodes (IONs) are con-
nected to the compute nodes (CNs) through the same fast fabric
(e.g., InfiniBand) while the connection to the external storage
cluster is through a secondary, slower channel (e.g., 10Gb
Ethernet). By providing additional storage on the IO nodes,
such as SSDs, these nodes are capable of better regulating
the IO pressure on the underlying storage array better than
simple forwarding gateways. For this project, using something
like SSDs on the IO nodes is termed a Burst Buffer and is
discussed below.

D. Burst Buffers
The idea of burst buffers were initially explored in the

context of data staging [3], [2], [15], [27]. These initial designs
all use extra compute nodes to represent the data storage buffer
given the lack of any dedicated hardware support for this
functionality. The desired outcome of these initial studies is
to motivate how such functionality might be incorporated and
the potential benefits. Later, these concepts were proposed to
be incorporated into the existing IO stack architecture [16],
[5], [4].

In the case of the written IOD design, it describes a fixed-
sized staging area that is partitioned on a per-application basis.
As part of an application being deployed into the platform,
each application will be allocated a fixed number of IO nodes
for exclusive use during the application run. This provides
guarantees about how much burst buffer space and processing
capability will be available for the applications.

Future work will generalize this model to potentially sup-
port dynamic IO node allocation and examine the possibility of

oversubscription. It will be strictly necessary to consider shared
IO nodes for cases where the number of deployed applications
exceeds the number of IO nodes. This first phase focuses on
extreme scale application runs that use the vast majority of
a platform rather than a capacity cluster where end-to-end
performance is a lesser concern.
Design Philosophy

The burst buffers design, as presented in the IOD doc-
uments, limits the placement of the function operators and
SSD buffers to the IO nodes. The limitations of this design
are acknowledged and the intent is to ultimately spread the
IOD layer from the IO nodes into the compute area as well.
This is intended both to help address the limitations of the
IO bandwidth and compute capability of these few nodes for
data processing, but also to take advantage of new layers in
the storage hierarchy. By incorporating NVRAM into compute
nodes, new options for buffering data prior to being moved to
centralized storage become available and addresses potential
concerns about SSD performance. For example, including a
small amount of Phase Change memory into many or most
compute nodes offers a way to move data outside of both the
compute and IO path for data and communication intensive
operations. Other projects [27] have shown this will have value,
but the cost will have to be considered as part of the overall
platform budget. This lessens the impact of some operators
while offering additional options for places to store data.

Burst buffers being optional is a high level goal, but not
considered in detail within the phase one design. If there is no
burst buffer, all of the advanced functionality proposed for the
IOD layer would have to work against the DAOS layer instead.
For example, function shipping assumes it will operate on fast,
local data within the IOD layer rather than against the globally
shared DAOS layer. With the additional desire to support using
compute node resources for these operations, serious work will
be required to make a fully functional end-to-end IOD layer
implementation for a production system.

VI. DAOS LAYER
The Distributed Asynchronous Object Storage layer serves

as the traditional parallel file system interface layer for the
storage devices. This is the consistent, global view of the
underlying devices represented in this stack by the VOSD
layer.

This is the layer where the container/object model is
translated into the physical storage requirements dictated by
the physical storage underneath (the VOSD layer). The two
key design elements of this layer are the handling of epochs
and the mapping of containers and objects to the underlying
storage.

There is a bit of a terminology shift between the IOD layer
and the DAOS layer. For the IOD layer, a shard represents a
portion of an object that is spread across potentially multiple
IO nodes. For the DAOS layer, a shard represents the portion of
a container that is spread across potentially multiple physical
storage devices. The physical storage devices are represented
by the VOSD layer described in Section VII.

While transactions at the HDF5 and IOD layer use the
same term, at the DAOS layer the terminology shifts. Instead
of transactions, the term epochs is used instead. Rather than
attempting to introduce confusion, this is intended to help
clarify how these concepts are used at different layers of the
FFSIO stack. In the HDF5 and IOD layer, every operation has



a transaction that may or may not ultimately be persisted to
the DAOS layer. When a transaction is persisted to DAOS, it
is termed an epoch to reflect that this is a persistent version of
the container. For simplicity the epoch ID is the same as the
transaction ID that was persisted.

The process of persisting a transaction to an epoch involves
a process called “flattening”. Since this stack uses a copy-
on-write approach to reduce the space requirement for new
versions of existing files, when a transaction is persisted to a
DAOS epoch, all of the changes between the last epoch and
the current epoch must be combined into a single entry. The
process of combining the changes from a series of transactions
into a single update for an epoch is termed flattening.

The current implementation has the DAOS layer map the
container/object data model onto a directory/file data model
used for most existing file systems. Should a fully object-based
file system be deployed at the VOSD layer, this mapping would
be unnecessary. The current projections suggest that a standard
POSIX-like file system will likely be used at the lowest level
on each storage device requiring the mapping at some level.
To perform this mapping, DAOS considers the following.

Each container is represented by a directory on some
storage device containing symbolic links to all of the shards it
contains and maintains the epoch ID. In particular the Highest
Committed Epoch (HCE) is an important concept for quickly
identifying which version of a shard to retrieve and to block
writes to older epochs since those have been committed.

Overall, the DAOS layer serves as the shared persistent
storage interface for the IO stack. In the case of a data center-
wide storage array, the DAOS layer would be shared across
all of the platforms with the upper layers being local to each
individual platform.

To address consistency issues between platforms, con-
tainers at the DAOS layer must know of every transaction.
To address this, a container is updated every time a new
transaction is created for it and closed or aborted. This ensures
that if multiple platforms are writing to the same container
sequentially that they will not have conflicts in the highest
transaction number. The FFSIO stack does not support multiple
applications from the same or different platforms using a
shared DAOS layer to write to the same container at the same
time.

VII. VOSD LAYER
The Versioning Object Storage Device (OSD) layer oper-

ates as the interface for each persistent storage device used to
support the parallel storage array. In the purest form, it uses
a local file system to arrange storage of objects that represent
parts of the higher level objects in containers.

The base level implementation continues the space opti-
mization of only storing changes for new versions by using
a copy-on-write file system. The prototype uses ZFS [26] for
the known stability and integration with Lustre. In a production
version of the FFSIO stack, btrfs [19], The Linux B-Tree File
System, given its open-source backing and GPL licensing, is
a likely long-term choice.

At a more detailed level, the design for VOSD is an
increment beyond the current Lustre Object Storage Device
design to incorporate the idea of shards and the versioning
aspects of transactions/epochs. For every DAOS shard, the
VOSD has information for storing and accessing the currently
committed version, the Highest Committed Epoch, as well as

a staging dataset representing the next version of the object
being stored. Both of these are combined in a shard root.

For data integrity, an intent log is maintained as part of the
underlying file system enabling fault recovery.

Beyond the functionality to incorporate and expose the
copy-on-write nature of the underlying file system and the se-
mantics for storing and processing shards and their associated
epochs, this is largely an evolution of the existing Lustre OSD
layer.

VIII. BROADER DESIGN
Several concepts crosscut many of these layers and are best

described in a single location. For example, transactions and
epochs are visible from the user API level down into the VOSD
layer. While each layer affects the concept, it is best to look
at it across all of the layers.

In the subsections that follow, we examine transactions and
epochs, metadata management, function and analysis shipping,
and the arbitrary connected graphs support.

A. Transactions and Epochs
As mentioned above, the transaction mechanism manifests

in two forms. From the user level down through the IOD layer,
they are called transactions and are used to judge whether or
not a set of distributed, asynchronous modifications across a set
of related objects is complete or not. It is also used to control
access by treating the transaction ID of committed transaction
as a version identifier. At the DAOS layer and below, they
are called epochs and represent persisted (durable) transactions
from the IOD layer. Each of these offers different functionality,
but are connected as is explained below.

1) Transactions: To understand how transactions are used
in the IOD layer, some terminology and concepts must be
explained first. At the coarsest grain level is a container. Each
container provides the single access context through which
to access a collection of objects. Transactions are the way
that a series of modifications to the objects within a container
are treated atomically. Conceptually, containers corresponds
to a something akin to an HDF5 file in a traditional file
system. The objects in each container represent different data
within a file. The three initially defined object types are key-
value stores, multi-dimensional arrays, and blobs. The easiest
way to understand these types is to evaluate these from the
perspective of an HDF5 file, the initial user interface layer.
The key-value store represents a collection of attributes or
groups. The array represents a potentially multi-dimensional
array. The blob represents a byte stream of arbitrary contents.
The fundamental difference between an array and a blob is
that the array has metadata specifying the dimension(s). At
the physical layer within the IO nodes, all of these objects
may be striped across multiple IO nodes. Given this context,
the transactions come in two forms.

First is a single leader transaction where the IOD manages
based on calls from a single client. The underlying assumption
is that the client side will manage the transactional operations
itself and the single client is capable of reporting to the IOD
how to evolve the transaction state.

The second form is called multi-leader and has the IOD
layer manage the transactions. In this case, when the transac-
tion is created, a count of clients is provided to the IOD layer.
As clients commit their changes to the container, the reference
count is reduced. Once the count reaches 0, the transaction is
automatically committed.



Design Philosophy
Undocumented, but inherent in the design of these transac-

tions is how faults are detected. The initial design assumes the
current Lustre fault detection mechanism that can determine
if a process or node is no longer reachable. This detection
happens at the DAOS layer and when a fault is detected, the
rollback process is pushed up to the IOD layer for all non-
persisted or non-committed transactions. This defines how a
fault will be detected and what will trigger a passive fault
recovery (i.e., transaction abort).

There are two steps for beginning a transaction on a
container. The first step is for one or more process to open the
container. This handle can be shared eliminating the need for
every participating process to hit the IOD layer to open the file.
The second step is a call to determine how many leaders will
participate in the transaction. In the single leader case, there
is no aggregation of success/fail statuses to determine the final
transaction state. Instead, it is assumed that the client will fully
manage the transaction. In the multi-leader model, some subset
from 2 to n where n is the count of all processes, declare
themselves a leader for this container operation to the IOD
layer. Any number of processes can participate in modifying
container without regard to whether or not they are a leader.
Once each leader has finished, with the assumption that any
clients they may be responsible for are finished as well, the
IOD layer aggregates those responses to either commit or abort
the transaction.

Ultimately, with the passive detection of faults for transac-
tion leaders, the transaction mechanism can work very well. A
mostly unstated restriction that is being relaxed is that every
sequential transaction on a container is considered dependent
on the earlier transaction. Should one output be delayed and
the subsequent five succeed, when the delayed process finally
fails, all six transactions are rolled back. The thought of using
this mechanism to store subsequent checkpoint outputs in the
same container to both save space, but not care if one fails,
cannot work in the current form. This has been acknowledged
and is being relaxed requiring a new parameter to the creation
of a transaction determining if it will be dependent or not.

2) Epochs: The Epoch mechanism differs from transac-
tions. Instead of focusing on when a particular output is
complete, an epoch represents incremental persisted container
copies. To simplify the mapping between an IOD transaction
and the DAOS epochs, when an IOD transaction is persisted
to DAOS, the IOD transaction ID is the used as the epoch ID.
The key difference is that at the DAOS layer, some transaction
(epoch) IDs will not be represented with data since not all
IOD transactions are necessarily persisted. Maintaining this
ID continuity is critical for multiplatform use. Since the shared
point is the DAOS layer, any user adding a new version to a
file must be able to determine the most recent transaction ID
no matter from where the container was updated last.

B. Metadata Management
Metadata management has been a perennial challenge for

parallel storage systems. Eliminating metadata management as
a special case and instead treating it just as data is a central
design goal of the Fast Forward project. This is a hybrid
approach to metadata management that is halfway between
providing no inherent metadata support and having a fully
integrated, but separate metadata management system.

Eliminating metadata as a core component of a file system
is not new. It has been explored as part of the Light Weight
File Systems project [17]. In LWFS, the metadata service is
explicitly limited to a user task with the storage layer limited
to data storage/retrieval, authorization, and authentication. This
approach proved workable. Using this hybrid approach is less
common [25] and introduces other issues.

IOD and DAOS both share a philosophy that they will
have to maintain the metadata about how the physical pieces
of the logical objects are striped and where they are placed.
The primary metadata management is done at the DAOS
layer with the IOD layer relying on the DAOS layer for all
authoritative information about containers and objects. The
only place where the IOD layer manages metadata for itself is
to manage how the different objects are striped across the IO
nodes.
Design Philosophy

While the metadata design is not fully defined, there are
a few things that are intended. For example, there will be a
standard, well-known container that is the system metadata.
This includes the list of all other containers. This container
is treated like any other data in the system and striped as
appropriate. Unfortunately, this still couples the metadata to
a single object that must serialize access. If the metadata,
including information about striping and other data layout
operations were separated completely from the data path, more
scalable throughput could be achieved. The real challenge
of this is introduced by the IOD, DAOS, and VOSD layers
collectively. Each of these requires some different metadata
storage and the migration is transparent to the user. Supporting
fully independent metadata with this model is difficult. Serious
thought on how to do this effectively outside the data path will
be considered for phase two.

C. Function and Analysis Shipping
A client/server architecture is implemented for the Com-

pute Node-IO Node communication model. Every ION runs
an IOFSL (IO Function Shipping Layer) server. The IOFSL
client is integrated into the HDF5 library running on each CN.
A client can forward requests to any number of IONs. Every
IO operation issued by HDF5 is asynchronously shipped to the
IOFSL server and asynchronously executed. As it is currently
implemented, the only functionality that can be “shipped”
already exists on the IONs and is activated using RPC calls.
This will be re-evaluated for phase two to provide more
dynamic functionality.

D. Arbitrarily Connected Graphs
What people popularly consider Big Data applications fall

into two broad categories. First, data processing tasks that
can fit into the MapReduce model where data is tagged and
sorted to discover relationships. These sorts of applications
only require scale out rather than scale up. Scaling out requires
replicas to process data simultaneously, but do not need to
coordinate for that data processing. Scaling up, what scien-
tific simulations do, requires sometimes serious coordination
between the processes for any of them to succeed. In the
middle are graph applications that, with some replicated data,
can be made to fit reasonably well into the MapReduce
model. The challenge is having access to the edge and vertex
lists effectively to build partitions for independent process-
ing. GraphBuilder [10] is a tool to generate effective graph



partitions reducing the load for using MapReduce to process
graph data sets. GraphLab [14] offers a way to process these
graphs efficiently for parallel platforms using a minimum of
communication. Using these tools as motivators, changes to
the HDF5 interface and the underlying storage infrastructure
is proposed. The following illustrates the architecture of both
frameworks:

Fig. 4. GraphLab and GraphBuilder stacks

In order to make both of these tools work on top of the
extreme scale stack, they both have to be modified. After
these modifications are implemented, GraphBuilder will be
able to write the partitioned graph in the newly proposed HDF5
files which will thus be stored in the IOD nodes (or IONs)
in a parallel-optimized way. On the GraphLab side, HDF5-
awareness will allow the library to perform at high speeds by
benefiting from the new features, such as the function shipping.
In general both frameworks will be modified so that calls
to HDFS-based formats are replaced by the proposed HDF5
equivalents. This is referred to as the HDF Adaptation Layer
or HAL and will provide, from the GraphBuilder/GraphLab
point of view:
• capability for storing the newly proposed HDF5 for-

mat
• association of network information to vertices/edges
• shipping computation to the IONs
• asynchronous vertex updates
• efficient data sharing among CNs
• computation over versioned datasets
The initial phase of this project has determined the nec-

essary changes in the HDF5 format to support these features.
These identified features will be proven during phase two with
a demonstration of GraphBuilder and GraphLab.

IX. DEMONSTRATION
This stack has an early prototype implementation intended

to test concepts rather than performance and scalability. It has
focused on examining the interaction of the different APIs for
each layer to flesh out any detailed requirements or concerns
that may have been missed in the conceptualization of this IO
stack. To demonstrate the viability of the IO stack described
in this paper, we show some very early performance results
from the untuned prototype.

All of the tests are performed on the Buffy Cray XC30-
AC at LANL. It consists of 64 compute nodes each with
dual, 8 core Intel Xeon ES-2670 CPUs at 2.6 GHz and 64
GB RAM. The interconnect is Cray Aries. There are 14 IO
nodes consisting of single socket, 8 core Intel Xeon ES-2670
CPUs at 2.6 GHz with 32 GB of RAM. There are also a
metadata, login, and 2 boot nodes. The storage array has disk
and SSD paritions. One is a DDN Lustre system with 192 TB
disk usable with a minimum of 5 GB/sec performance. The
rest are SSDs consisting of an EMC flash array connected via
FDR InfiniBand with 22 TB and 48 GB/sec write performance.

We run two different sets of tests. The first set in Figure 5
show the reading and writing performance for different number

of hosts. Each read or write is 4 GB against the x-axis number
of hosts. The second set in Figure 6 show the performance of
reading and writing different sizes for 56 clients, the smallest
client count when performance stabilizes in the number of
hosts tests. The performance of both of these tests are reported
to give a very rough idea of the overhead that might be
involved. Rather than a true overhead, this should be con-
sidered the maximum overhead that should be expected once
an optimized, fully functional IO stack is deployed without
relying on translating to an underlying parallel file system.

X. CONCLUSIONS
The Fast Forward Storage and IO Stack project has de-

signed a good first pass at addressing the requirements for
an extreme scale data storage mechanism. By preferring a
high level user API like HDF5 rather than using the POSIX
interface, more advanced functionality can be incorporated
with less end-user impact. The introduction of the IOD layer
with buffering will absorb the difference between the compute
node IO demands and the available bandwidth in the storage
array. With DAOS supporting translating the container and ob-
ject model to the underlying storage options, different storage
technologies can be deployed over time.

With the overall stack design a prototype implementation
complete, refinements, such as fault detection and recovery,
can be designed and tested. These and other activities for
phase 2 will ultimately generate what is likely to be the next
generation storage stack for extreme scale platforms.

XI. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES
[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky. Just in

time: adding value to the io pipelines of high performance applications
with jitstaging. In Proceedings of the 20th international symposium on
High performance distributed computing, pages 27–36. ACM, 2011.

[2] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf.
Extending i/o through high performance data services. In Cluster
Computing, Luoisiana, LA, September 2009. IEEE International.

[3] H. Abbasi, M. Wolf, and K. Schwan. LIVE data workspace: A
flexible, dynamic and extensible platform for petascale applications. In
CLUSTER ’07: Proceedings of the 2007 IEEE International Conference
on Cluster Computing, pages 341–348, Washington, DC, USA, 2007.
IEEE Computer Society.

[4] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and
J. Woodring. Jitter-free co-processing on a prototype exascale storage
stack. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1–5, April 2012.

[5] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland,
A. Torres, and A. Torrez. Storage challenges at los alamos national
lab. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1–5, April 2012.

[6] P. J. Braam. The lustre storage architecture. Cluster File Sys-
tems Inc. Architecture, design, and manual for Lustre, Nov. 2002.
http://www.lustre.org/docs/lustre.pdf.

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A
parallel file system for linux clusters. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 317–327, Atlanta, GA, Oct.
2000. USENIX Association.



(a) Write Hosts (b) Read Hosts
Fig. 5. Functionality Demonstration Validation for Number of Hosts

(a) Write Size (b) Read Size
Fig. 6. Functionality Demonstration Validation for Data Sizes

[8] Fastforward storage and i/o stack design docu-
ments. Intel FastForward Wiki, February 2014.
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and
+IO+Program+Documents.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In
Proceedings of the NineteenthACM Symposium on Operating Systems
Principles, pages 96–108, Bolton Landing, NY, Oct. 2003. ACM Press.

[10] N. Jain, G. Liao, and T. L. Willke. Graphbuilder: Scalable graph
etl framework. In First International Workshop on Graph Data
Management Experiences and Systems, GRADES ’13, pages 4:1–4:6,
New York, NY, USA, 2013. ACM.

[11] J. Lofstead, R. Oldfiend, T. Kordenbrock, and C. Reiss. Extending
scalability of collective io through nessie and staging. In The Petascale
Data Storage Workshop at Supercomputing, Seattle, WA, November
2011.

[12] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In Proceedings
of the International Parallel and Distributed Processing Symposium,
Rome, Italy, 2009.

[13] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf. Managing variability in the IO performance of
petascale storage systems. In Proceedings ofSC2010: High Performance
Networking and Computing, Nov. 2010.

[14] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, Apr.
2012.

[15] A. Nisar, W.-k. Liao, and A. Choudhary. Scaling parallel I/O perfor-
mance through I/O delegate and caching system. In SC ’08: Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, pages 1–12,
Piscataway, NJ, USA, 2008. IEEE Press.

[16] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield. Zest
checkpoint storage system for large supercomputers. In Petascale Data
Storage Workshop, 2008. PDSW ’08. 3rd, pages 1 –5, nov. 2008.

[17] R. A. Oldfield, A. B. Maccabe, S. Arunagiri, T. Kordenbrock, R. Riesen,
L. Ward, and P. Widener. Lightweight I/O for scientific applications.
In Proceedings of the IEEE International Conference on Cluster Com-
puting, Barcelona, Spain, Sept. 2006.

[18] Object-based storage architecture: Defining a new generation of storage
systems built on distributed, intelligent storage devices. Panasas Inc.
white paper, version 1.0, Oct. 2003. http://www.panasas.com/docs/.

[19] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree filesystem.
ACM Transactions on Storage (TOS), 9(3):9, 2013.

[20] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large
computing clusters. In Proceedings of the USENIX FAST ’02Conference
on File and Storage Technologies, pages 231–244, Monterey, CA, Jan.
2002. USENIX Association.

[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop dis-
tributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[22] J. Soumagne, D. Kimpe, J. A. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. B. Ross. Mercury: Enabling remote procedure call
for high-performance computing. In CLUSTER, pages 1–8. IEEE, 2013.

[23] The HDF Group. Hierarchical data format version 5, 2000-2014.
http://www.hdfgroup.org/HDF5.

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 2006Symposium on Operating Systems Design and
Implementation, pages 307–320. University of California, Santa Cruz,
2006.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In OSDI’06,
Seattle, WA, Nov. 2006.

[26] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. End-to-end data integrity for file systems: A zfs case study.
In R. C. Burns and K. Keeton, editors, FAST, pages 29–42. USENIX,
2010.

[27] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. PreDatA -
preparatory data analytics on Peta-Scale machines. In In Proceedings
of 24th IEEE International Parallel and Distributed Processing Sym-
posium, April, Atlanta, Georgia, 2010.


