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Abstract—Stochastic unit commitment models typically handle
uncertainties in forecast demand by considering a finite number
of realizations from a stochastic process for the loads. Accurate
evaluations of expectations or higher moments for the quantities
of interest require a prohibitively large number of model eval-
uations. In this paper we propose an alternate approach based
on using surrogate models valid over the range of the forecast
uncertainty. We demonstrate that surrogate models, employing
Polynomial Chaos expansions, built using sparse quadrature
methods, and used to estimate expected generation cost, can lead
to several orders of magnitude reduction in computational cost,
relative to using Monte Carlo sampling on the original model,
for a given target error threshold.

Keywords—Stochastic Unit Commitment, Monte Carlo, Polyno-
mial Chaos Expansion

I. INTRODUCTION

Unit commitment (UC) is the fundamental process of
scheduling thermal generating units in advance of operations
in the electric power grid [1]. The objective is to minimize
overall production costs to satisfy forecasted demand for
electricity, while respecting constraints on both transmission
(e.g., thermal limits) and generator infrastructure (e.g., ramping
limits). Economic dispatch (ED) is a closely related elec-
tric grid operations problem, in which cost minimization is
performed to identify an optimal set of power output levels
of a fixed set of active thermal generating units. UC and
ED are respectively formulated as a mixed-integer and linear
optimization problems, and solved using commercial solvers.
Despite improvements in forecasting technology, next-day de-
mand predictions are imperfect, with errors on average in the
1-3% range and exceeding 10% on specific days. To account
for such inaccuracies, reserve margins are universally imposed
in UC. These margins implicitly deal with uncertainty in load
forecasts, by ensuring there is sufficient generation capacity
available to meet unexpectedly high demand during operations.

An alternative approach to dealing with forecast errors
in UC is to explicitly model the load uncertainty, typically
via a finite set of sampled realizations from a stochastic
process model of load. This approach results in a stochastic
UC model (SUC), in which the objective typically is to
minimize the expected cost across the load scenarios [2], [3].
By explicitly representing the inherent uncertainty in load
forecasts, a SUC solution ensures sufficient flexibility to meet
a range of potential load realizations during next-day opera-
tions. Further, by explicitly representing uncertainty, reliance
on reserve margins is reduced, yielding less costly solutions
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than those obtained for the deterministic UC problems. While
not considered here, we note that the problems induced by
increasing rates of renewables (e.g., wind and solar) generation
penetration accentuates the differences between stochastic and
deterministic UC problems, due to increased errors in the next-
day forecasts relative to load. While conceptually appealing,
the computational difficulty of stochastic UC is well-known
[4], such that it is not presently used in practice. The difficulty
is primarily driven by the number of forecast samples required
to achieve high-quality, robust solutions.

Uncertainties such as those found in stochastic UC are
ubiquitous in both power systems operations and planning,
and the importance of credibly accounting for them is well-
recognized. However, lack of advanced methods to handle
uncertainty and the limitations of scenario-based approaches
have led researchers to seek alternatives. For example, Thiam
and DeMarco [5] argue: “Simply put, when uncertainty is cred-
ibly accounted for such methods yield solutions for economic
benefit of a transmission expansion in which the “error bars”
are often larger than the nominal predicted benefit.” Instead,
Thiam and DeMarco [5] propose an “oblivious approach” to
transmission expansion that does not take into account the
uncertainties in the inputs. We agree that an oblivious approach
is more credible than simply ignoring large error bars in
estimations. However, we posit that with proper modeling and
sampling algorithms, the errors incurred in such analyses can
be drastically reduced. Of course, it is not possible to change
the nature of uncertainties, such that if uncertainties are so
large that they fail to provide significant information, oblivious
approaches may be appropriate. However, as we argue in this
paper, it is possible to reduce additional uncertainties and
inefficiencies introduced due to poor modeling and sampling.

In this paper, we propose to adopt advanced modeling
and sampling techniques from the uncertainty quantification
(UQ) community, and leverage them to impact power systems
operations problems such as stochastic UC and ED. Such
techniques have been successfully applied in many areas of
computational science and engineering, with great success [6].
Most studies analyzing uncertain power system operations
problems generate forecast scenarios by drawing random
samples from a stochastic process using standard Monte
Carlo (MC) techniques. In this paper, we consider instead
an alternative approach based on using Polynomial Chaos [7]
expansions, built using sparse quadrature methods, as surrogate
models valid over the range of the forecast uncertainty. We
demonstrate that our approach yields a one to two order



of magnitude reduction in the number of samples required
to estimate expected generation cost, relative to MC, for a
given target error threshold. Our approach has the potential
to dramatically drop the computational difficulty of stochastic
UC and ED, significantly reducing the barriers to its use in
practice.

The remainder of this paper is organized as follows. We
briefly introduce the stochastic UC formulation in Section II,
to provide context for our research. In Section III, we detail
our surrogate models of load for stochastic UC, based on
Polynomial Chaos expansion. We then empirically analyze the
accuracy of our surrogates on standard IEEE test problems in
Section IV, and conclude in Section V.

II. STOCHASTIC COMMITMENT AND DISPATCH

We now introduce a generic formulation of the stochastic
UC problem. Our formulation is based on the deterministic
mixed-integer linear UC formulation introduced by [1]. Let
G and T denote the index sets of thermal generating units
and time periods, respectively. We generically define the set
of unit commitment constraints (i.e., operational and physical
constraints on physical units) as X and let x denote the vector
of unit commitment decisions. The stochastic UC problem is
then given as follows:

min c(x) +c¥(x) + 0(x) (1a)
st. xeX, (1b)
x € {0,1}CIxIT] (lc)

The objective terms c*(x) and c?(x) represent generating
unit start-up and shut-down costs, respectively, and Q(x)
denotes the expected generation cost. The UC constraints
prescribed by X include: minimum on-off requirements and
linearization of startup and shutdown costs.

We treat the loads D' for all + € T as random vari-
ables (RVs). We begin by setting up a requisite theoretical
framework as follows. Define the probability space (Q,S,P),
where Q is a sample space, G is a c-algebra on Q, and
P is a probability measure on (Q,S). Further, defining the
germ §=1{£1,&,...,§ 7|} as a set of independent identically
distributed (iid) RVs in Ly(Q,S,P), to be further specified
below, we focus on the probability space (€2, 6§,P) employing
the sigma algebra generated by & We define the uncertain
loads as RVs D'(®) : Q — R in L(Q, &g, P), such that we
may write, by construction, D' := D' (§(w)), Vt € T.

Given the uncertain loads expressed as RVs, the cor-
responding generation cost Q(x,&(w)) is similarly uncer-
tain/random. The expected generation cost, denoted Q(x), is
defined as

0(x) = EgQ(x,§(w)) (2a)

and the uncertain (multi-period) economic dispatch problem
under a fixed unit commitment x is given by

O(x,§(w)) =
min Y'Y E(p,)+ ) My (3a)

P9

teT geG teT
st. Y po—q =D'(&(w), VieT (3b)
geG
Pox, <Py <Pex,, VgeGueT (3c)
py—ry ' SRUM'x), VgeGiteT (3d)
Py =Py, <RD(; ' X)), VgeGreT.  (3e)
where

RU (¥ " ) = Rixly ' 4 84(xl — )+ Py (1 — )
RD(x, ' X)) = RIX, + 8(x, ! —xb) + Po(1—x47")

and RY/RY, S¥/S¢ represent nominal ramp-up/ramp-down
rates, startup/shutdown ramp rates, respectively.

Note that because the loads are RVs, all solution variables
are necessarily RVs. For brevity of notation, we have only
included the explicit dependence on &(®) in D' and Q, thereby
emphasizing the randomness of inputs/output of interest only.

The optimization objective in ED is to minimize the
expected total production and loss-of-load costs. The first term
in (3a) represents total production cost. The second term repre-
sents the loss-of-load penalty, where ¢’ is the unit (e.g., MW)
of load unsatisfied in period ¢. Typically, the load-shedding
penalty is equal to a large number M. Constraints (3b)-(3e)
specify operational constraints, and include (in order): power
balance at each period (3b); lower and upper bounds for
committed generation unit output levels (3c); and generation
ramp-up and ramp-down constraints for pairs of consecutive
time periods (3d) and (3e).

A quadratic production cost function, given below, is
typically employed in scheduling electricity grid operations.

cg(p;) = agx; + bgp; +cg (Ptg)z “

Equation (4) can be accurately approximated by a set of
piecewise linear segments. For conciseness, we omit these
standard linearization steps. For a detailed treatment on the
linearization of the quadratic cost function please refer to [1].

The stochastic ED problem is embedded as a sub-problem
in the stochastic UC problem. The high-level context in
stochastic UC is the presence of uncertainty in future loads
(and, more generally, renewables and system component fail-
ures). In stochastic UC, the first-stage decisions are the unit
commitment selections x, and the objective is to minimize the
expected generation costs. In the second (recourse) decision
stage, uncertain loads result in uncertain recourse decisions for
the dispatch variables p and ¢q, and associated generation and
load shedding costs. First-stage unit commitment decisions are
determined by taking their future impacts into consideration.
These future impacts are quantified by the recourse function
Q(x), which computes the expected value of generation cost
for a given unit commitment x.

We can estimate the expected generation cost by using a
finite number of load realizations (i.e., scenarios) s € 8§ sampled



from the joint density p(D), where D = {D',D?,...,DITI}.
Defining p = 1/|8|, formulation (1) can be rewritten as:

min  c*(x) +c(x)+p Z O(x,s) (5a)
* sES
st. xeX, (5b)
x € {0,1}/CXIT] (5¢)
where Q(x,s) =
min Z Z cg(p;) + ZMq’ (6a)
pq teT geG teT
st. Y py—q =D, VieT (6b)
geG
ngfg < pfg, <Pyx,, VgeGireT (6¢)

Pe—py | SRUGG %), YgeGreT  (6d)
Py~ Py <RD(x '\x,), Vg€GeT.  (6e)

Formulation (5) represents an extensive form of the stochas-
tic UC problem, based on |8| sampled scenarios of load
realizations. Formulation (3) can be similarly discretized.

III. ACCURATE ESTIMATION WITH LIMITED SAMPLES

The typical scenario sampling approach described above
uses Monte Carlo (MC) sampling to approximate an integra-
tion, thereby estimating an expectation. While MC algorithms
are commonly used for their convenience and robustness, their
poor convergence rate is well-known. The MC estimate of the
expectation has the error

V[0(x,8)]/V/1S], 7

where V[Q] denotes the variance of the RV Q. Given the signif-
icant additional complexity incurred by including stochasticity
in the optimization problem, a stochastic formulation, as op-
posed to a deterministic one, becomes advantageous when the
variance is large. Hence, accurate estimation of the expectation
is not only an academic exercise but an important practice as
well.

According to Eq. (7), this can be achieved by increasing
the number of samples, but the a linear decrease in the
error requires a quadratic increase in the number of samples,
which can quickly render the stochastic optimization problem
prohibitively expensive. This illustrates the limitation of MC
algorithms in providing accurate estimations; while they are
convenient, they do not efficiently yield accurate estimations.

Similar problems arise in uncertainty quantification (UQ)
for computational science in general, where each sample point
would correspond to a full simulation. At the same time,
accuracy of the estimations have paramount importance, since
simulation results may lead to scientific discoveries or high-
impact policy decisions. The need for accurate estimation of
uncertain model outputs, along with the prohibitive cost of MC
samples, have lead to the development of efficient alternatives
to MC methods in UQ. In this work, we will illustrate how
we adopt such methods for stochastic optimization problems
in power systems. The details of the proposed method will
be explained in the subsequent section. The key utility of the

approach is that it enables, in a preprocessing step, efficient
construction of a compact, accurate, and computationally inex-
pensive representation of the input-output map of the uncertain
system. This representation, is then used as a surrogate, for
the dependence of select model-output quantities of interest
(QolIs) on uncertain model inputs. Using this surrogate, rather
than the original system governing equations, enables accurate
estimation of uncertain Qols, and associated expectations, with
minimal costs beyond those of surrogate construction.

A. Representation of uncertainty using Polynomial Chaos

Given the formulation in Eq. (3) with uncertain/random
loads leading to uncertain/random generation cost, we employ
efficient UQ methods, relying on functional representations of
random variables. Specifically, we use Polynomial Chaos (PC)
expansions. A brief description of PC is presented below. For
an in-depth description, the reader is referred to a series of
publications on this topic [7]-[10].

Considering the above defined germ & and the associated
probability space (Q,&¢,P), any RV X : Q@ — R where,
by construction, X € LZEQ,G;,,P), can be written as a PC
expansion (PCE):

X(0) = X&) = ¥ o0 ¥y (€) ®)
k=0

where the basis functions W are multivariate polynomials* that
are orthogonal, by construction, with respect to the density of
&, thus

W) = [ WO OPE =5,  ©

where §;; is Kronecker’s delta. Further, given this orthogonal-

ity, we have
(XW)

(¥2)

oy = (10)
where the inner product is defined, for any RV Z(§), by the
Galerkin projection

@)= [ 2&)p )t an

Moreover, the W, are products of univariate polynomials,
namely Wi (&) =y, (€1) - - Wi, (§n), where n=|T|. In a prac-
tical computational context, one truncates the PCE to order p.
The number of terms in the resulting finite PCE

P
X~ Y aW(E) (12)
k=0
is: P4+1=(n+p)!/n!p!. We dispense with the ~ symbol in
the rest of the text, employing for any RV X (&), its truncated
PCE

X =
k

P
OCk‘Pk (g) . (1 3)

=0

Generalized PC (gPC) expansions have been developed by [10]

using a broad class of orthogonal polynomials in the Askey

scheme [11]. Each family of polynomials corresponds to a

*Generally, other, non-polynomial, basis functions can be used, but we
restrict ourselves here, without loss of generality, to the most common
polynomial-based usage.



given choice of distribution for the &; and is, by construction,
orthogonal with respect to the density of &;. In general, most
useful choices for (§,W) are uniform RVs with Legendre
polynomials and normal RVs with Hermite polynomials.

B. Surrogate Construction

We employ Legendre-Uniform (LU) PC, as it is most
useful for purposes of surrogate construction. Further, in this
particular context, i.e. explicitly for surrogate construction, a
key first step is to define the input random variables as iid
uniform over their ranges of interest. This does nof restrict the
utility of the approach to iid uniform load distributions. Rather,
the uniform assumption is simply to ensure uniform accuracy
in the surrogate over the range of loads variability. Once the
surrogate is available, providing effectively the input-output
map, any p(D) can be employed, as is further outlined below.

Since, by construction, for LU PC, &, ~ i

defining D' % U (DL
simply by

U(-1,1), VteT,
Dl ..), we have the PCE for D' given

D —-D_. D +D.
D' = fmax min max min -y e 7. 14
&f 2 + 2 ) € ( )
In this context we employ Eq. (13) to represent Q(x,&) with
a truncated LU PCE

Orc(x,8) = Z cr(x (15)

where, to be specific, ¥, (§) are n-variate Legendre polyno-
mials (n = |T|). The coefficients ¢; depend on the discrete
variable x, hence separate PCE approximations for Q will be
constructed for each instance of x. Given Eq. (11), we have

_ (0¥ 1
) =G =gy |, QBB (16)

where we have used pg(§) =1, for § € [-1,1]".

Given Qpc(x,€), then for the given D' Yy (D> D)
Vvt € T, we have immediately that
O(x) = Eg[0(x,8)] = (0(x.8)) = co, (7)

being the solution of the stochastic ED problem, as required
for the stochastic UC problem Eq. (1).

Beyond this, however, the PCE Qpc(x,&) can be used as
a surrogate for the ED problem solution Q(x,&). Specifically,
Opc (x,&(Dy)) ~ QO(x, s) (see Eq. 6) for any demand D; € D
where D = {D|D’ fax) VI € T'}, employing

[ mm’

2D" — (Dt D
£ = D’( ma"l; mm), VteT. (18)
max min

Thus, for any arbitrary p(D), the PCE Qpc(x,E(D)) can be
used to efficiently provide samples Q(x,s) given random sam-
ples D; ~ p(D), as long as D € ID. Thus, the MC estimation
of the expectation Q = p~ Zses QO(x,s) in Eq. (5a) can be
done with arbitrarily large |S| given the low cost of samples.
Alternatively, for any p(D), one can employ the PCE for
D(n), where 7 is suitable PC germ, and use sparse-quadrature
methods outlined below to evaluate projection integrals, but
now using as forward model the surrogate Qpc(x,§(D(M))),

to arrive at the PCE for Q(x,m), from which one easily has
QO = ¢, as long as the sparse-quadrature samples D(’r]q) e D.
The only remaining issue is the evaluation of the projection
integrals in Eq. (16). This is discussed below.

C. Evaluation of the Projection Integrals

Several methods can be employed to evaluate the projection
integrals in Eq. (16). MC methods can be used in principle,
but are impractical given their slow convergence rate. Alterna-
tively, for smooth integrands, and particularly in low-moderate
dimensional problems, sparse quadrature methods [12]-[14]
can provide highly accurate results with smaller numbers
of deterministic samples. Figure 1 shows the locations of
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Fig. 1. Placement of deterministic samples via a sparse grid approach.
deterministic samples we use, with a sparse grid employing
Clenshaw-Curtis quadraure. Several nested levels are shown
in the figure, with “+”, “x”, and “0” markers to illustrate
the fact that model evaluations can be re-used if higher-order
approximations are necessary. The number of requisite samples
employing sparse-quadrature evaluation of the projection inte-
grals, for a given requisite surrogate accuracy, is much smaller
than the corresponding number of MC samples, as we illustrate
in the following.

IV. NUMERICAL RESULTS

We now present numerical results comparing the calcula-
tion of the expected cost of ED via our proposed surrogate
model with the classical approach via Monte Carlo scenario
sampling. We consider two cases: a 9-bus example [15] and the
IEEE 118-bus test system [16]. We vary the number of time
periods |T'| from 6 to 24. Following the model and analysis in
[1], we relax transmission constraints and focus on generating
unit characteristics. In Figure 2, we show a typical load series
for the IEEE 118 bus test system. The red bars depict a 20%
uncertainty range around the nominal values.

We first proceed to test the accuracy of the PCE surrogate
for Q(x,D) with respect to full model evaluation. For this
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Fig. 2. Uncertain demand values for the IEEE 118-bus example. The error
range is 20% around the nomical values.

exercise we select the 9-bus model since the full model evalua-
tion is cheap, hence we can explore well the high-dimensional
demand space. Table I shows the relative L, error computed
with the discrepancies observed at quadrature points between
truncated PCE’s, in Eq. (15), and the cost values via direct
evaluations. Several sparse quadrature levels are employed.
The table shows results for PCE orders from 1 through 4.
A three-level sparse quadrature, L3 in the table, is sufficient
to construct a second-order PCE model with a negligible
error compared to the full model. Moreover, depending on
the purpose of the PCE model, a first-order approximation
can also be sufficient. Cross-validation tests using ensembles
with 10° random samples, results not shown, confirm the high
accuracy of the PCE model. Similarl tests indicate that point-

Order Sparse Quadrature
L2, 85p | L3, 389p | L4, 1457p | L5, 4865p
1 1.62e-05 | 2.90e-05 | 2.15e-05 2.18e-05
2 - 7.48¢-07 | 2.17e-07 7.83e-08
3 - - 1.92e-07 5.36e-08
4 - - - 2.10e-08
ABLE 1. RELATIVE L; ERROR AT TRAINING POINTS FOR SEVERAL

PCE SURROGATES AND SPARSE QUADRATURE LEVELS. POWER
GENERATION COST DISCRETIZED USING 10 SEGMENTS.

wise discrepancies between the PCE surrogate and the full
model are less than 0.5% throughout the computational domain
for a 2-nd order PCE.

Figure 3 illustrates the dependence of cost on the load in
specific time periods. This figure shows 2-dimensional slices
though the load spaces for the 9-bus (top frame) and 118-bus
(bottom frame) model. The cost Q in these figure is normalized
by the expected value for each case.

The goal of this exercise is to demonstrate the efficiency
of PCE to compute the expected cost over all possible load
realizations. Fig. 4 shows the convergence of the standard
deviation of the expected cost for the 9-bus model with 6 load
periods, evaluated using an number of scenarios between 102
and 10°. These results indicate that about 10* samples are
necessary to reduce the relative error of the expected cost to
below 1073.

Figure 5 shows sample convergence rates for MC compared

56
54 18

52 D

Fig. 3. Top frame: Slice through a 6-dimensional 2-nd order PCE model for
the 9-bus system. Bottom frame: Slice through a 24-dimensional PCE model
for the 118-bus system. The transparent surface shows the 3D dependence of
Q on the corresponding loads. Filled contours are projected on the side planes
to provide a qualitative view for the dependence on each load.

to the PCE approach. For MC, a relative error of 1073 requires
about 10* model evaluations. The number of model evaluations
is independent of the number of loads periods, and is nearly
the same for the 9-bus and 118-bus systems. For the surrogate
model approach, the number of model evaluations represents
the cost of building the PCE. This cost is higly dependent on
the dimensionality of the surrogate, for example the number of
model evaluations for a 24-dimensional PCE is one-two orders
of magnitude larger compared to a 6-dimensional PCE. Once
the PCE is constructed, subsequent evaluations of Q(x) incur
negligible cost. Hence the efficiency of the surrogate model
approach over the routine MC approach is proportional to the
number of times Q needs to be evaluated during a simulation.
For the 118-bus model, 10 evaluations of Eq. (2) results in
a computational time about 10* times smaller for the PCE
approach compared to the traditional MC approach



1.04

1.02

1.00

Ep [Q(z,D(w))]

0.98]

0.96!

10° 10° 10 10°
No. of samples

Fig. 4. Convergence of EpQ(x,D(®)) computed via MC vs PCE results.
Scatter plots show normalized EpQ(x,D(®)) computed an increasing number
of MC samples. The filled circles show +6 for each ensenmble, and the
horizontal line shows the values computed via PCE. The expectation values
are normalized by the “true” value obtained by MC using 10° samples.
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Fig. 5. Convergence of EpQ(x,D(®)) computed via MC (solid green line) vs
PCE results. The results for a 6-dimensional PCE corresponding to 9-bus with
6 load periods is shown with solid blue line, while the results for a 118-bus
24 load perionds and equivalent 24-dimensional PCE is shown with solid red
line. The dashed lines show theoretical convergence rates of 1/2 (green) and
2 (blue).

V. CONCLUSION

In this paper we present an efficient approach to reduce
the computational cost of the forecast samples necessary in
stochastic Unit Commitment simulations. This approach is
based on surrogate models for the generation cost that cover
the uncertainty of future load. The surrogate models are con-
structed using Polynomial Chaos expansions. The construction
of the terms in the surrogate models is based on the projection
of the model on increasingly higher basis modes. Thereby the
global error in an L, sense between the surrogate model and
the actual simulations is easily controlled.

We present computational results using 9-bus and 118-bus
test cases. For both these cases quadratic surrogate models
for the generation cost showed global L, errors less that

10~* while pointwise errors were less than 1% throughout
the uncertain demand space. The construction of Polynomial
Chaos surrogate models typically requires a much smaller
number of samples, typically one to two orders of magnitude
for the examples considered in this paper, compared to Monte
Carlo evaluation of the expected generation cost for a given
requisite accuracy. Subsequent evaluation of the generation
cost statistics via surrogate model incurrs negligible additional
cost, thereby potentially reducing the computational expense
of the forecast ensembles in a stocastic unit commitment by
several orders of magnitude.
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