SAND2008- 2832C

Development of a Parallel Transfer Model for
OPNET

John Sherrell
Electrical and Computer Engineering
Kansas State University
Manhattan, KS
Email: jms7373 @ksu.edu

Abstract—We introduce a Discrete Event Simulation (DES)
software model for a generalized application that transfers bulk
data over parallel TCP streams. We discuss the features and
design philosophies of OPNET®, the software environment where
our model was developed and where it runs. An overview is given
of real-world parallel transfer (PT) applications and we arrive
at a basic set of parameters that a PT model should support to
be sufficiently general. We present our model design and breifly
discuss its runtime behavior. Finally, some preliminary results
are presented that compare simulated performance of parallel
transfers on a specialized high-performance network to actual
test data.

I. INTRODUCTION

A common performance optimization for network data
transfer applications is to move a single logical transfer
in parallel over multiple TCP streams. This technique can
dramatically increase aggregate throughput even when the
end-to-end network capacity remains fixed. The technique is
effective because TCP is often a significant performance bot-
tleneck in modern networks []. There are several reasons why
parallel TCP streams can improve overall performance: they
compensate for poorly tuned TCP parameters, they increase
fairness for high-latency flows, they reduce the time required
to recover from packet loss, and they provide an opportunity
for application-controlled load-balancing over parallel paths
on the underlying network.

We desire a tool that can predict parallel transfer (PT)
application performance from a wide range of relevant ap-
plication, network, and storage parameters at a substantially
lower cost than testing each scenario on a live network.
An analytical model for aggregate throughput of a parallel
stream data transfer is proposed in [], but most other related
studies have been empirical in nature. This paper introduces
a Discrete Event Simulation (DES) software model of a
generalized parallel file transfer application. We first discuss
real-world PT applications to form a basis for the parameters
the model should suport to be sufficiently general. Next, we
introduce OPNET®, the modeling software used to develop
and simulate our model. We will emphasize the flexibility
it provides in modeling an enormous range of scenarios and
system parameters. Finally, a description of the model’s design
is provided along with some preliminary results.

Jason S. Wertz
Network Design and Operations
Sandia National Laboratories
Albuquerque, NM
Email: jswertz@sandia.gov

Don Gruenbacher
Electrical and Computer Engineering
Kansas State University
Manhattan, KS
Email: grue@ksu.edu

A. Parallel Transfer Applications

There exists a wide variety of real-world PT applications
with diverse designs. Parallel File Transfer Protocol (PFTP) []
opens persistent, FTP-style sessions, and allows users to set
the block size and stripe width for a transfer. The block size
is the amount sequential file data that will be accessed by a
single socket or filesystem operation. The stripe width is the
number of parallel streams used by the transfer. In PFTP, file
data is striped over the parallel streams, so that if the stripe
width is NV, each stream will seek N —1 blocks through the file
between each of its disk operations []. Finally, PFTP enforces
a lock step block transfer protocol, where each stream must
wait for an application-layer acknowlegement after every block
it sends before sending the next block. MPSCP is similar to
PFTP, but it benefits from increased efficiency because it does
not use a lock-step block transfer protocol and because its
striping procedure is more flexible, with each stream always
transmitting the next available file block. Other PT applications
include simple download manager applications that run on
plain FTP and Hyper Text Transfer Protocol (HTTP). These
applications tend to not use the striping procedure mentioned
above, instead assigning one large, contiguous segment of the
file to each stream. Neither protocol employs a lock-step, and
HTTP transfers have no real overhead to speak of.

In general, a PT model should allow specification of the
following parameters:

o the per-session, per-transfer, and per-block overheads,
o the stripe width and block size,

« the method for assigning blocks to streams, and

« any required synchronization (like lock-step protocols).

The per-session and per-transfer overheads should have a
negligible effect on performance for large file transfers, but
might dominate total delay for many small transfers.

B. OPNET Modeler

OPNET is a software environment used to model and sim-
ulate networks. Models in OPNET are hierarchical: network
models consist of instances of node and link models, and node
models consist of instances of process models. Each process
model defines a finite state machine (FSM), the behavior of
which is fully specified in C or C++ source code. Process

model code frequently calls library functions provided by
OPNET, called kernel procedures (KPs), which provide useful
services like packet manipulation, interprocess communica-
tion, and random sampling of statistical distributions

An important feature of OPNET is that it ships with an
extensive standard model library, encompassing a wide variety
of network hardware and protocols. Thus, if we were confident
in the validity of our PT model, we could collect an amazing
array of useful data. We could, for example, simulate PT
application performance for different TCP congestion control
algorithms, various background traffic types, increased layer-2
MTUs, various QoS policies in intermediate routers, or many
other relevant parameters.

II. DESIGN

The PT model is designed at the traditional application layer
in the TCP/IP stack, which is different from the standard OP-
NET applications. As Figure 1 shows, the PT model interacts
directly with TCP, while the standard OPNET applications
reside above a couple of additional abstractions: the TPAL and
GNA layers. The primary feature of the TPAL layer is the
transport protocol-independent API it offers to applications.
However, TPAL requires applications to use server names
instead of IP addresses, and TPAL semantics also restrict
each application type to just one listening (incoming) TCP
port. Both of these restrictions would prevent a proper PT
application implementation, because the application must be
able to determine which port and interface to bind each
listening socket to. Applications utilizing the GNA layer are
intended to implement only client logic and to generate traffic
patterns by sending commands such as [respond with
3 packets] to a generic, shared server. Obviously, this
approach is too restrictive for the logic-dense PT model,
which requires specific server behavior. One useful service
provided by the GNA layer is the configuration paradigm of
usage profiles. With this approach, configured instances of
applications are defined, and then profiles are defined that use
the application instances in some pattern at configurable sim-
ulation times. This works well with typical OPNET modeling
workflows, and although it is currently not supported by the
PT model, it might be desirable to integrate it into the model
in the future.

The PT model is implemented as a set of four OPNET
process models with the hierarchical relationships illustrated
by Figure 2. There are not separate client and server models.
The process models underlying both ends of a PT application
session are identical; one side is simply configured to wait
for a connection while the other is configured to initiate
the connection. We prefer the user label to describe the
node actively opening the connection, and the listener label
to describe the node that accepts the connection. Actually,
these labels are only valid for a node in the context of
a given session, because nodes can participate in multiple
sessions simultaneously. In fact, all nodes are always listeing
for connections. At initialization , each PT-enabled node will
run a single manager process, which will spawn a single

[PT App 2;'&"”

| Gl;lix |
| TPAL |

PFTP striping a file transfer over four parallel TCP streams.

Fig. 1.

filesystem process and a listening session process.
User session processes are spawned by the manager on-
demand at whatever simulation times the parent node is
configured to initiate a transfer session. Unlike with Unix
sockets, once the listening session accepts a connection, the
listening socket is consumed. We have created a mechanism
to notify the parent manager when this occurs so it will
immediately spawn a new listeining session. Sessions may
overlap, so a node might be running two or more session pro-
cesses simultaneously. Each session models one or more file
transfers, depending on the user configuration. File transfers
have an associated stripe width, which determines how many
mover processes are spawned at both sides of the connection.
Movers are paired up by their parent session processes.
Once connected, mover processes transfer blocks, optionally
requiring acknowlegements after each transfer to simulate the
lock-step of PFTP. The rigid assignment of blocks to movers
in PFTP is simulated by requiring all movers to transmit the
same number of blocks. The dynamic assignment method used
by MPSCP requires some communication between the sending
mover processes and thier session parents. A transfer is
complete when all mover processes are finished.

In some special scenarios, network performance might
surpass local filesystem performance. Parallel streams utiliz-
ing fast new networking technologies can provide sustained
throughputs too large for disks to source or sink. Thus it is
important to model cases where filesystem performance is the
limiting factor in a parallel transfer. Commonly, sites interested
in high-speed data transfer will avoid the local bottleneck by
striping files over many disks. However, PT applications that
stripe block data over the network streams will likely see better
performance on parallel filesystems than will PT applications
that transfer large contiguous segments, which will likely
generate excessive disk seeking. Thus, we desire a model
that can adapt filesystem performance based on application
parameters. Finally, we anticipate the need to model special
storage scenarios such as retreving a file from a high-latency
tape archive. For the flexibility to model all of these possi-
bilities, we created the previously mentioned filesystem
model. The model provides file access modeling at a high
level. The mover processes issue block read or write requests

Manager

VAN

Filesystem Session

Mover Mover | ® ® ®E | Mover

PT Node

Runtime Process Hierarchy

Fig. 2. The hierarchy of process models that make up the PT model.

to the node’s filestem process. The £ilesystem process
will then simulate a general file read or write delay before
notifying the original mover process that the I/O operation
is complete and it may continue working. Currently, operation

of the £ilesystem model is trivially simple: it uses random PETP Avg. Transfer Rate, SNL --> LLNL
samples from an exponential distribution as the delay values, 450 Niean Storage Delay = bms
where the mean of the distribution is user-configurable. The 400 ¢ Moo oo Delay = 3 me
filesystem model needs substantial implementation and 30 Actual 1
validation work to fulfill its purpose. é 300 - 1
III. RESULTS el |
5 200 b E
We now present some preliminary results. Figure 3 plots 2 el |
simulated aggregate parallel transfer rate versus stripe width = 100 1 |
(number of streams) for various levels of filesystem perfor- ol |
mance. Also plotted are actual values obtained from PFTP tests o s
on the Advanced Simulation and Computing (ASC) program o 2 4 & 8 10 12 14 16 18

WAN, which connects together the high performance com- Stripe Width (Streams)

puting (HPC) resources at the Department of Energy/National Fig. 3. Transfer rate versus stripe width for various mean storage delays.
Nuclear Security Agency (DOE/NNSA) main weapons lab- These results are preliminary.
oratories. The ASC WAN consists of 10 Gigabit links that

span up to several hundred miles between laboratory sites in

central New Mexico and Livermore, California. The PT model

was installed in an existing OPNET network model of the

ASC WAN to obtain the simulated results. As the plots show,

the simulation results are fairly realistic up to four parallel

streams, especially for larger storage delay values. At this point

(around 100 Mbytes/s), we believe the real ASC hosts might be

limited by filesystem performance, but this will require further

investigation. As we add features to our £ilesystem model

and collect more test data, we expect to obtain more interesting

and definitive simulation results.

