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Motivation
 Li-O2 batteries 

 Highest possible theoretical energy density of any known battery chemistry

 Cathode eliminated, uses oxygen (air) at nearly half the volume and weight 
of other Li batteries

 No thermal runaway issues

 Many applications: vehicles, portable power, defense

 There are many challenges that need to be overcome



Background – Li-air batteries

Possible reaction products formed at the cathode:
Li+ + O2 → LiO2

4Li+ + O2 → 2Li2O
Li+ + LiO2 → Li2O2

*Note: figure not to scale



Significance of our work

 To our knowledge, this is the first attempt to quantitatively 
compare modeled values of battery electrolyte transport 
properties will those obtained from real Li-air batteries.

 Why is this important?
 Quickly screen new materials

 Predict battery performance and kinetics

 Evaluate the differences between model and reality
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Project Overview
 Overall goal: 

 Develop/validate a predictive model as an 
electrolyte screening tool for Li-air batteries 
using Li+ diffusion as the figure of merit

 Modeling:
 Evaluate literature potentials for accuracy 

for a model electrolyte

 Determine validity of literature approach 
and calculation methods

 Experiment:
 Perform electrochemical experiments on 

validation electrolytes

 Calculate Li+ diffusion coefficients

 Make corrections for physical differences in 
battery cell



Diffusion coefficient

 Mass transfer across given surface area

 What are you talking about?
 Chemical diffusion

 Self diffusion

 Effective diffusion – diffusion through pores in porous media

 Fickian diffusion

6



Modeling vs. Experiment - Diffusion
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Experimentalists usually just report their data



Differences between model and 
experiment

• Ideal conditions

• No physical barriers to ion 
diffusion

• No competing chemistry

• Diffusion calculation – Fickian vs. 
others

• Non-ideal conditions

• Physical barriers to diffusion –
separator, cathode

• Side reactions, electrolyte stability

• Diffusion calculated based on 
certain assumptions

MODEL EXPERIMENT

How to compare?
• Carefully constructed experiments to avoid non-ideal conditions
• Correct experimental results for diffusion barriers



Updated Approach to Modeling Mass 
Transfer Properties for Batteries
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Model Details
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 Molecular Dynamics model using LAMMPS software 
(SANDIA)

 Atom interactions (energies and forces) described using 
CHARMM potential
 Intermolecular forces:

 Lennard-Jones potential

 Coloumbic long-rang interactions

 Intramolecular forces:

 Combination of harmonic functions defining bonds and preferred orientations

 Bonds can not be broken or formed on the fly

Propylene Carbonate (PC) Tetrafluoraborate (BF4)Ethylene Carbonate (EC)



Model validation
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Green-Kubo for diffusion
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 Uses Green Kubo techniques to get D

 The integral converges to D

Raw Data

Correlation of 
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Integral of 
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What makes these models different 
from Literature

 Potentials modified to reflect correct material properties
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Experimental Battery Data
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Experimental Techniques

 Cyclic voltammetry
 Direct calculation of diffusion coefficient

 Long experiments (1 data point = 3 days)

 Effects of ion diffusion and charge transfer are combined 
(slow/complicated kinetics covers up diffusion)

 Electrochemical impedance spectroscopy
 More convoluted methods required for diffusion coefficient 

calculation

 Short experiment times (~1hr)

 Separation of diffusion and charge transfer effects

 Both techniques are needed to fully understand the reaction kinetics, 
but CV was used for diffusion coefficient calculation
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Experiment – cyclic voltammetry
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Calculation of diffusion coefficient

 Nicholson-Shain relation

 Tafel equation for α (transfer coefficient)
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Experimental Corrections
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Physical corrections:

• tortuosity of separator

• porosity of separator

• tortuosity of scathode

• porosity of scathode

How do we account for the physical difference 
between modeling and experimental results?

*Thorat, et al. J. Power Sources 188 (2009) 592-600

lit
h

iu
m

 f
o

il

s
e

p
a

ra
to

r

P
o

ro
u

s
 

s
c
a

th
o

d
e

Deff  Dmeas

L

Ltotal











separator


L

2Ltotal











cathode















What we 
measure

What we 
model  1.80.53

*where



Results
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Lessons learned

 Carbonate system was probably not 
the best “model” system choice – Li-
carbonate interactions are an issue

 Know how the modeled data and 
experimental data compare and what 
is physically being measured/modeled

 Know what type of diffusion 
coefficient you are reporting and 
comparing to other data
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Summary
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 For the first time, there is a quantitative validation of the MD 
model of transfer properties from real experimental data.

 This new model provides a predictive/screening tool for new 
Li-air electrolyte materials

 We have validated our models by looking at the physical 
differences between model and “real battery”.



 Questions?
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