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Li-O2 Batteries Show Promise as Enhanced Energy 
Density Storage Systems  

Full scale systems analysis 

K.G. Gallagher et al. Energy Environ. Sci. 
DOI: 10.1039/c3ee43870h 

• Li-O2 could delivery specific energy density 
gains 2-5X beyond state of art Li Ion 

• To get there, many science challenges need 
to be overcome 

stable cathode 
efficient electrocatalyst 

cathode function preservation 

stable electrolyte 

stable Li metal 
deposition/stripping 
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image courtesy of M. Radin and D. Siegel, U. Mich. 

Preserving Cathode Function: One Challenge to 
Achieving Efficient O2 Electrochemistry for Li-O2 

Batteries   

location matters! 
electrocatalytic sites cannot be blocked 

nucleation and growth sites must facilitate OER charge transfer  

gaseous to solid 
chemical 

transformation 
reactions 

ORR Discharge  

O2 + e- + Li+  LiO2 

LiO2 + e- + Li+  Li2O2 

disproportionation 

2LiO2  Li2O2 + O2 

OER Charge  
Li2O2  O2  + 2e- + 2Li+ 
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Motivation and Experimental Details 
• Electrochemical AFM  

• 0.4 mL electrolyte volume 
• Distilled and dried TEGDME + 1 M dried LiTFSI 

• Galvanostatic & voltammetry electrochemistry 
• EC-AFM on HOPG and Au (Wen et al. JACS 2013; ChemComm, 2014) 

• Goals  
• Understand effects of electrogeneration rate on product distribution 

(Adams et al. Energy. Environ. Sci. 2013) 
• Understand relationship between e- transfer sites (HOPG steps) and 

product distribution 

Ar 

O2 

antechamber 

AFM O2  

chamber 

EC-AFM 

 cell 

glove 

gas out 

scanner 

CE = Li or Au metal 

RE = Li metal 

WE = HOPG (A = 2.1 cm2) 

AFM chip 

nanoband electrode 

100 nm 
2xAB AB A A 
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A Reproducible Product Growth Sequence is Observed 
Continuous assembly 

growth - step preference 
Initial growth on step 

edges after slight delay 
Compact film growth 

& passivation  

100 nm 100 nm 200 nm 

12 nm 

0 

-12 

25 nm 

0 

-25 

30 nm 

0 

-30 

Film infill at end 
of discharge 

Next image 

1 mm 1 mm 

before discharge after discharge 
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Nature of the Passivating Compact Film 

C(1s) 

Compact Film Product Particles 

sp2 (HOPG) 

sp3 (aliphatic) 

C-O 

0=C-O 
CO3

-2 

CF3
 

Film composition = LixOy w/ organic 
• ToF-SIMS - LixOy(H)± & LiCO3

- 

• XPS – carbonate, high C-O content 
• Residual (incorporated) TFSI 
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• Low rate leads to large 
step particles and a thin 
film between steps  

• High rate leads to thin 
film formation 

Increasing Rate Forces an Early Transition to Compact Film 
Formation and Passivation 

0.85 mA/cm2 

1.7 mA/cm2 

17 mA/cm2 

larger peroxide 
particles 

smaller peroxide 
particles 

2 nm 

 

-5 

increasing rate 

4 nm 

 

-6 

40 nm 

 

-60 

100 nm 100 nm 200 nm 
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Product Quantity – Surface Capacity are Linked to 
Discharge Overpotential 

• Surprising variance for a “defined and reproducible” HOPG electrode surface: WHY? 

lower hORR ~ higher capacity larger particles 

2.44 V 

2.52 V 

larger particles 
have the 

appearance of 
assembled 
structures 100 nm 100 nm 
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• HOPG chosen for readily identifiable e- transfer sites to correlate with product 
distribution 

• Conventional wisdom: k0
step >> k0

basal (e.g. McCreery et al. Anal Chem 2012) 

• k0 values for HOPG vary by 8 orders of magnitude! 

• Recent challenge: nearly reversible behavior and no differences in CV response 
with step density (Patel et al. JACS 2012)  

 

HOPG as a Constitutive Electrode 

nanoband electrode 

100 nm 
2xAB AB A A 

McCreery et al. Anal Chem 2012 

Patel et al. JACS 2012 

k0 varied greatly for 13 different redox systems 



5/10/2014 

May contain trade secrets or commercial or financial information that is privileged or confidential and exempt from public disclosure.  

10 

• CV: 2 mM ferrocene + 1 M 
LiTFSI in TEGDME  

• No change in CV from 
changes O-ring pressure2  

• e- transfer is facile  

• Step edges and terraces are 
both active to e- transfer 

• Site specificity not being 
driven by e- transfer at steps 

• Nucleation sites likely control 
product formation 

e- Transfer is Fast on HOPG Steps and Terraces 

no change over several hours = no 
gradual surface passivation1 

grade 2 HOPG 

high scan rates result in little change in 
DEp – near reversible behavior 

n = 5-2500 mV/s 

n grade 2 HOPG 

ip ~ n1/2 as expected 

DEp shifts can be accounted for by Ru 

n = 100 mV/s 

little change with step edge density variation 
(can account for with changes in Ru) 

1. Patel et al. JACS 2012 2. McCreery et al. Anal Chem 2012 

n 

n = 5-2500 mV/s 

Grade Mosaic Angle Grain Size 

SPI-1 0.4+/-0.1o ~3 mm 

SPI-2 0.8 +/-0.2o ~0.5 mm 

SPI-3 3.5 +/-1.5o <30-40 nm 
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Step Edges as Favored Sites for Product Formation 

Au(111) surfaces: 
minimal difference between step 
and terrace activity and minimal 

barrier for nucleation 

• Steps are the favored nucleation sites 
• If steps are not the favored e- transfer sites, 

steps must be favored oxygen adsorption sites 
• Interfacial saturation due to mass transport 

discharged 

Observations consistent with:  

O2 + e- + Li+  LiO2 (soln)  

2LiO2  Li2O2 + O2 (soln) 

Localized: hemi-
cylindrical diffusion 

Uniform: semi-
infinite diffusion 
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Product Nucleation and Growth Changes with an Oxophilic 
Surface  

Co-locating an oxophilic species with step edges 

3300 s 

5200 s 

initial 

5200 s 

100 nm 

36 nm 36 nm 

36 nm 

b-MnO2/HOPG 

HOPG 

Discharge at 0.8 mA/cm2 

step edge templated b-MnO2 on graphite 

• Peroxide growth is distributed over b-
MnO2 particles   

• Conformal and lateral growth vs. large 
particle growth at the step edges 

• Eventual passivation produced by thin conformal film growth on the basal plane 

b-MnO2 deposition by N. Hahn (SNL) 
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Step Edge Decoration with a High DOS Metal Yields a 
Similar Response 

We anticipate Au NP’s serving as both electron transfer and 
product nucleation sites 

• Some NP displacement after charging – step 
edges minimally altered 
 

• Growth of product 
over and around the 
Au NPs 

• No clear NP size 
effects small 

large 

100 nm 

100 nm 100 nm 

100 nm 

initial 1100 s 

3600 s charged 

Discharge at 0.8 mA/cm2 

2.4 V discharge vs. 2.5 – 2.6 V for Au(111) 
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Directing Nucleation onto the Terrace of HOPG 

Backfill the terrace with b-MnO2 to make the terrace more oxophilic – low energy ion 
oxygenation to pin oxide NPs at defects 

T: b-MnO2 

1500 s 

100 nm 

100 nm 

charged 

100 nm 

8600 s 

770 s 

100 nm 

Discharge at 0.8 mA/cm2 

2.4 V discharge potential vs. 2.6 V reported for 
b-MnO2 (LiTFSI, TEGDME)* 

• MnO2 particles encapsulated with product 
• Inter-particle area is infilled with product 
• Apparent Au NP heights remain constant – 

continuous film growth is occurring 
everywhere  *O. Oloniyo et al., J. Electron. Mater, DOI: 

10.1007/s11664-012-2046-1 

b-MnO2 deposition by N. Hahn (SNL) 
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• Peroxide product formation is dictated by electrogeneration rate 
• High rates lead to thin films without distinction between 

terrace and steps 
• Low rates lead to large particle nucleation on the steps and 

a thin film between the large particles 
• The HOPG surface eventually passivates as a result of 

compact film formation 
 

• Steps are the active nucleation sites 
• Steps not the dominant e- transfer sites 
• Nucleation and growth can be spatially directed by 

controlling the oxophilicity of the surface 
 

Conclusions 
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