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The Mercury ProblemThe Mercury Problem

• Nation’s largest source of  
anthropogenic mercury 
emissions: coal-fired power 
plants

• EPA’s Clean Air Mercury Rule: 
Reduce mercury emissions by 
~70% by 2018

• Gas-phase Hg exists in two 
forms:
(1) Elemental Hg (Hg0): removed 

with activated carbon sorbent 
($$$)

(2) Oxidized Hg (primarily HgCl2): 
water soluble, removed by wet 
scrubbers

Source: EPA 1999 NEI 
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Current Mercury Detection InstrumentsCurrent Mercury Detection Instruments

• Sample probe removes gas from 
stack

• Sample conditioning:

– Remove Hg2+, measure Hg0

– Reduce Hg2+, measure total Hg

• Mercury analyzer

– Atomic fluorescence/absorption 
using Hg-lamp optical source

– Concentrating step

• Multiple problems associated with 
probe and sampling lines

– Plugging of the probe

– Chemical reactions within 
sampling lines

sample
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probe
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line

Hg analyzer

Probe fouling and decay
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Source: R. McRanie, “Thermo Supergroup II,” 2006 



Goal: Short-range lidar approachGoal: Short-range lidar approach

Laser sources

Detectors

• Nominal response time of a few minutes

• Avoids issues with sampling lines and filters

• Direct extension to probing other locations or species in process stream

• Speciating mercury emissions monitor:

– Hg0: resonance laser-induced fluorescence (LIF) measurements

– HgCl2: detection of photofragment emission (PFE)

Requirements: 

• Detection limit: 0.1 ppb

• Acquisition time scale: ~5 
minutes



Photofragment Emission (PFE) Detection of HgCl2Photofragment Emission (PFE) Detection of HgCl2

~210 nm
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Photodissociation generates Hg* Hg* emits a photon or is 
collisionally quenched.
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Feasibility StudiesFeasibility Studies

Laboratory Laser Test Cell and Collection Optics

• Laser tuned from 207-215 nm

• Varied pulse energy and test cell buffer gas pressure/ 
composition



Quantifying HgCl2 PFEQuantifying HgCl2 PFE
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Quenching rate coefficients:

N2: 4.20 (±0.49) × 10-12 cm3 molecule-1 s-1

O2: 2.87 (±0.08) × 10-10 cm3 molecule-1 s-1

CO2: 4.57 (±0.89) × 10-11 cm3 molecule-1 s-1



BBOLBOKTP
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Compact 213-nm Laser SourceCompact 213-nm Laser Source

• Near-IR to deep-UV 
conversion in single 
pass

• Compact, rugged, no 
cavities required

• 3 crystals: KTP, LBO, 
and BBO



Laboratory Laser vs. Compact LaserLaboratory Laser vs. Compact Laser

Tunable (~210 nm) 213 nm

>100 μJ A few μJs

20-Hz rep rate ~10-kHz rep rate

>2 mW avg. Few 10’s of mW avg. 



Instrument Cart Optical LayoutInstrument Cart Optical Layout



Calibration Approach DemonstratedCalibration Approach Demonstrated

• Replaced flow cell with calibration cell (with vapor pressure HgCl2)

• Checked for intensity2 dependence

• Checked for repeatability
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Photon-Counting Detection for PFEPhoton-Counting Detection for PFE

• At 0.1 ppb, counts-per-pulse ≈ 10-5

• 10-kHz rep rate, 5-min acquisition time: 3×106 laser pulses

• ~30 signal counts will be collected

• Challenge: Background counts

Signal-to-noise ratio = S/(S+2B)1/2

S: signal counts

B: background counts



Future DirectionsFuture Directions

Sandia’s Multifuel Combustor (MFC):

Source: C.R. Shaddix and A. Molina, “NOx 
formation in laboratory investigations of oxy-coal 
combustion,” Fall meeting of the Western States 
Section of the Combustion Institute, 2007 

Instrument cart:

Experiments are underway to 
measure the HgCl2 content of 
coal burned in Sandia’s MFC.


