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The Mercury Problem

« Nation’s largest source of
anthropogenic mercury
emissions: coal-fired power
plants

« EPA’s Clean Air Mercury Rule:

Reduce mercury emissions by
~70% by 2018

« (Gas-phase Hg exists in two
forms:

(1) Elemental Hg (Hg®): removed
with activated carbon sorbent
($$9)

(2) Oxidized Hg (primarily HgCl,):
water soluble, removed by wet
scrubbers
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urrent Mercury Detection Instrumen

« Sample probe removes gas from
stack

« Sample conditioning:

— Remove Hg?*, measure Hg°

— Reduce Hg?*, measure total Hg
* Mercury analyzer

— Atomic fluorescence/absorption
using Hg-lamp optical source

— Concentrating step

» Multiple problems associated with
probe and sampling lines

— Plugging of the probe

— Chemical reactions within
sampling lines
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Goal: Short-range lidar approach

Nominal response time of a few minutes
Avoids issues with sampling lines and filters
Direct extension to probing other locations or species in process stream
Speciating mercury emissions monitor:
— Hg®: resonance laser-induced fluorescence (LIF) measurements
— HgCl,: detection of photofragment emission (PFE)

Requirements:
» Detection limit: 0.1 ppb
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Laser sources

« Acquisition time scale: ~5
minutes

Detectors




agment Emission (PFE) Detection of

w“‘""p\"’\‘ Photodissociation generates Hg* Hg* emits a photon or is
P\\V' collisionally quenched.
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Feasibility Studies

Laboratory Laser Test Cell and Collection Optics
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* Laser tuned from 207-215 nm

 Varied pulse energy and test cell buffer gas pressure/
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Quantifying HgCl,, PFE

HgCl, PFE cross section
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Quenching rate coefficients:

N,: 4.20 (£0.49) x 10-'2 cm3 molecule™’ s
0O,: 2.87 (x0.08) x 1019 cm3 molecule™’ s
CO,: 4.57 (£0.89) x 10-" cm? molecule! s




Compact 213-nm Laser Source

* Near-IR to deep-UV
conversion in single
pass

« Compact, rugged, no
cavities required

« 3 crystals: KTP, LBO,
and BBO
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Laboratory Laser vs.

Compact Laser

Tunable (~210 nm)
>100 pd
20-Hz rep rate
>2 m\W avg.
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Few 10’s of mW avg.




Instrument Cart Optical Layout
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Calibration Approach Demonstrated

* Replaced flow cell with calibration cell (with vapor pressure HgCl,)
« Checked for intensity? dependence
» Checked for repeatability
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Photon-Counting Detection for PFE

« At 0.1 ppb, counts-per-pulse = 10-°
« 10-kHz rep rate, 5-min acquisition time: 3x10° laser pulses
» ~30 signal counts will be collected

« Challenge: Background counts

Signal-to-noise ratio = S/(S+2B)
S: signal counts

B: background counts
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Future Directions

Instrument cart:

Experiments are underway to
measure the HgCl, content of
coal burned in Sandia’s MFC.
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Source: C.R. Shaddix and A. Molina, “NOx
formation in laboratory investigations of oxy-coal
combustion,” Fall meeting of the Western States

Section of the Combustion Institute, 2007
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