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Symmetric Tensors 
 S[m,n] = set of m-way, n-dimensional symmetric tensors 

 m = number of modes or ways 

 n = size of each mode 

 symmetric = entries invariant to permutation of indices 

 

 

 

 

 

 

 

 Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), 
higher-order statistics, higher-order derivatives, relativity, signal 
processing, etc. 
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3-way tensor 

Symmetry for 3-way tensor (m = 3) 



Tensor-vector product: Axm-1 
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= 

Matrix Case (m = 2): 

3-way Case (m = 3): 



Tensor-vector product: Axm 
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Matrix Case (m = 2): 

= 

3-way Case (m = 3): 



Positive Definite Tensors 
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Observe that m must be even if A is positive definite: 

A symmetric tensor A is positive definite if  

Recall: 



Generalized Eigenproblem 
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Let A and B be m-way tensors of dimension n and assume B is positive definite. 
The generalized eigenproblem is defined as finding a pair (¸, x) that satisfies: 

Homogeneous system of n degree-(m-1) polynomials: 

Generalized Eigenpair 
(Chang, Pearson, Zhang 2009) 

positive definite 

Note that 



Optimization Formulation 
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Generalized Eigenpair 
(Chang, Pearson, Zhang 2009) 

Nonlinear Program 

Theorem: Any generalized eigenpair (¸,x) is a KKT point of the nonlinear 
program with ¸ as the Lagrange multiplier (and reverse is also true) 
 
Proof: 



Special Technique for 
Optimization on a Sphere 
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Simple Algorithm: 

Yields monotonically 
increasing function 

values and 
guaranteed to 
converge since 
operating on 
compact set. 

(Regalia & Kofidis , 2003) 



Special Technique for 
Optimization on a Sphere 
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& ) 

Simple Algorithm: 

Yields monotonically increasing function values and guaranteed to converge 
since operating on compact set. 

(Regalia & Kofidis , 2003) 



Creating Local Convexity 
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Shifted function: 

Original function: 

Choose ® to make all eigenvalues of shifted Hessian positive. 

Weyl’s 
Inequality 

¿ > 0: Convexity threshold Choose 



Gradient and Hessian 
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Tensor-vector product: Axm-2 
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= 

Matrix Case (m = 2): 

3-way Case (m = 3): 



Computing Products 
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Generalized Eigenproblem 
Adaptive Power (GEAP) Method 
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¯ = 1 ) local maxima 
¯ = -1 ) local minima 

O(nm/m!) work 

O(n3) work 
Adaptive Shift 

Pros: Extremely simple and fast 
Cons: Requires multiple starting points 



Comparison to Other Work 

 Polynomial Solver 
 E.g., Nsolve in Mathematica 

 Does not scale 

 SS-HOPM: Shifted Symmetric Higher-Order Power Method 
(Kolda & Mayo, 2011) 
 Only solves one special case of generalized eigenpair problem 

 Does not have adaptive shift 

 Otherwise method is identical 

 Han’s Method (Han, 2012) 
 Unconstrained optimization: 

 Uses any optimization method (e.g., L-BFGS) 

 Did not always converge to generalized eigenpair in our experiments 
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Z-eigenpairs: B = Identity Tensor 
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The identity tensor (denoted E) is defined as  

Only defined for m even. 

Z-Eigenpair 
(Qi 2005, Lim 2005) 

Special case of generalized eigenpair with 



Example: Z-eigenpairs 
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White = Local Max, Gray = Local Min, Black = Saddle Point 

All eigenpairs 
computed via 
Mathematica. 

0.8893 

0.8169 

0.3633 

0.3633 

0.8893 

0.8169 



Z-Eigenpairs: Adaptive Shift is 
Faster than Fixed Shift 

5/21/2014 T. G. Kolda – SIAM Optimization OP14 18 

30 34 26 
49 45 

57 

192 185 

261 

0.8893 0.8169 0.3633

Median Iterations 

Adaptive Shift Shift = 2 Shift = 10

 Comparison to SS-HOPM 
(fixed shift) 

 100 random starts 

 Three local maxima 

 Convergence:  
| ¸k+1 - ¸k| < 10-15 

 Choosing shift too small (e.g., 
zero) means the iterations 
will never converge 

 Choosing shift too large leads 
to slow convergence 

 Adaptive shift is much faster 
than fixed shift! 



Randomly Generated 
Generalized Eigenproblems 
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Question: How do we generate a random positive definite tensor? 

Theorem: Let S be a symmetric matrix. Let (¹, x) be an eigenpair of S 
(with ||x||=1). Define an m-way tensor B such that   

Then (¸,x) is an eigenpair of B with ¸ = ¹m. Moreover, Bym ¸ mini (¹i)
m

. 

Note: To keep B from being nearly indefinite, the smallest magnitude  
eigenvalue of S must be relatively large since it is raised to the mth power 



Random Generalized Eigenpairs: 
GEAP versus Han’s Method 
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Random Generalized Eigenpairs: 
GEAP versus Han’s Method 
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Conclusions and Other Work 
 Generalized tensor eigenproblem 

 
 

 
 We reformulated GTEP as nonlinear 

program  

 Monotonic algorithm for optimizing 
on the unit sphere 
 Any C2 function, not just GTEP 
 We propose adaptively choosing shift to 

ensure convexity  

 Open questions 
 Scalability 
 Particular min/max eigenpair? 
 Saddle points? 

 

 Related Work 
 Symmetric computations (SISC, 2014) 

 With Schatz, van de Geijn, Low @ UT 
 Reduce storage of symmetric tensor by 

O(m!) without sacrificing performance 

 
 
 
 
 
 
 

 Poisson tensor decomposition  
 “Count” tensors with Chi (SIMAX, 2012) 
 Speed improvements with Hansen, 

Plantenga (arXiv:1304.4964, 2013) 
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For more info: Tammy Kolda, tgkolda@sandia.gov 

• Kolda and Mayo, Shifted Power Method for Computing Tensor 
Eigenpairs, SIMAX 32(4), 2011 

• Kolda and Mayo, An Adaptive Shifted Power Method for 
Computing Generalized Tensor Eigenpairs, arXiv:1401.1183 


