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Symmetric Tensors

= Slmnl = gset of m-way, n-dimensional symmetric tensors
= m =number of modes or ways
= n =size of each mode

= symmetric = entries invariant to permutation of indices

/ Symmetry for 3-way tensor (m = 3)

Aijk = Aikj = Ajik = Qkij = Ajki = Akji

A / for all 4,5,k € {1,2,...,n}

3-way tensor

= Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI),
higher-order statistics, higher-order derivatives, relativity, signal
processing, etc.
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Tensor-vector product: Ax™1

x™ 1), = Z Z Qiyin. i Tin - Ty forip €e{1l,...,n}

\ S J
Matrix Case (m = 2): — e—
.ﬁlxi”_l / )
(Ax);, Z ai i, Ti, forip €{1,...,n} X
in=1 = A ]
3-way Case (m = 3): - /
. A € stmnl
(Ax?);, = Z Z Uiy inisTinLiy TOr 21 € {1,...,n} x € R"
ia=1143=1 Ax™-! ¢ R"
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Tensor-vector product: Ax™

n n n
.A,Xm = (AXm_l)TX = E E s E Aiiig..dpmLiyLig * "Ly,
i1=1io=1  i,=1

\_ J
Matrix Case (m = 2): &m ~
. /4 '

2 T
Ax® =x"Ax = E E Aj i Liy Ly HAx™

i1=1ip=1 o = A / i

3-way Case (m = 3):

nomom A e shmm
3
Ax” = S: Y: Y: QiyigizLiy Tig Lis x € R"”

i1=1iz=11i3=1 Ax™ € R
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Positive Definite Tensors
T

A symmetric tensor A is positive definite if

Ax™ >0 for all x # 0

\_ y,
Recall:
n mn mn
mo __
Ax —E § E Airio..ipy LigLio " Li,,
i1=1iy=1 in=1

Observe that m must be even if A is positive definite:
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Generalized Eigenproblem

Let A and B be m-way tensors of dimension n and assume B is positive definite.
The generalized eigenproblem is defined as finding a pair (), x) that satisfies:

Aecstm® [ Generalized Eigenpair
(Chang, Pearson, Zhang 2009) Note that
B e s A
E Ax™t = \Bx™ ! N =
\ , . Bx™
positive definite \ subject to ()\, X) c R xR

/

Homogeneous system of n degree-(m-1) polynomials:

Z Z Qiyig..in. — Abjin. i )Xy --x;, =0fori; e {1,...,n}

1o=1 =1
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Optimization Formulation

Generalized Eigenpair Nonlinear Program
(Chang, Pearson, Zhang 2009) B Ax™ n
‘Axm_l — ABXm—l }Ic%%}é f(X) — Bxm ||X||

subject to (A, x) € R x R" subject to ||x|| =1

- , ject to x| )
Theorem: Any generalized eigenpair (\,x) is a KKT point of the nonlinear
program with A as the Lagrange multiplier (and reverse is also true)
Proof:  L(x,A) = f(x) — A([[x[|"" — 1)
m | Ax™
Vi L(x,A\) = — [ (AX") x + Axm 1 — [ ) Bx™ | —mMx
(3 A) Bxm ( ) Bxm

_ (ﬂxm) x] —mAx =0
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Special Technique for M
Optimization on a Sphere o

max f(x) st. xe X ={xeR"||x| =1}

x€eR"™
A )y Defi
SSume w € 2, erie If veQandv#w,
) = open nbhd of w, | & Vf(w) — . .
) ) V= —= then f(v) > f(w)
f convex and C" on |V f(w)|

(Regalia & Kofidis , 2003)

Yields monotonically

Vf(xk) ek increasing function
Simple Algorithm: X0 gl:/:::s:eaer;dto
X1 Vf(xk) converge since
" ||Vf(Xk) || operating on

compact set.
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Special Technique for DR
Optimization on a Sphere |

max f(x) st. xe X ={xeR"||x| =1}

x€eR"™
A )y Defi
SSume w € 2, erie IfveQandv#w,
) = open nbhd of w, | & Vf(w) — . .
. . vV = - then f(v) > f(w)
f convex and C* on |V f(w)]]

(Regalia & Kofidis , 2003)

Vf:(Xk)
IV f(xz)]

Yields monotonically increasing function values and guaranteed to converge
since operating on compact set.

Simple Algorithm: Xp+1 <
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Creating Local Convexity

Original function: f(x):R" = R, g=Vf(x), H=V*f(x)

Shifted function: f(x) = f(x) + «of|x]|™

~

=f+a, §=Vf(x) =g+amx
H=V?f(x) = H+ aml + am(m — 2)xx"

kﬁ

For x € X.:

fconvexc)r )\min(ﬂ) >0fori=1,...,n

Choose o to make all eigenvalues of shifted Hessian positive.

Weyl’s A
Inequality Ai(H) + ma < Ai(H) < Ai(H) + ma +m(m — 2)a for a >0
1 .
Choose  a =max{0, —(7 — Amin(H)) } 7> 0: Convexity threshold
m
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Gradient and Hessian

HAxm
Eé%}é flx) = Bxm

subject to ||x|| =1

=™

m

g(x) = VI(x) = o [(Axm) - Axmt (%) mml]

m2Ax™

~ (Bxm)3

H(x) = V?f(x) (Bx" ' @ Bx™!)

m

+ B [(m — DAX™ 2 + AxX™ (14 (m —2)xx') + m(Ax" ' @ X):|

m

(Bxm)?

[(m — 1) Ax™Bx™ 2 + m(.ﬁlxm_l © me_l)

+ mAx™ (x © me_l)]
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Tensor-vector product: Ax™-2

T n
m—2 § : § : .
(-AX )iliZ — DRI a’i1’i2---im$i3"'xim fOI' ?’1722 6 {17...7??/}
is=1  ip=1

\, y

Matrix Case (m = 2):

Axm 2 / )
Ax" =1 X
= A ]
3-way Case (m = 3): /
. A e stmnl
(Ax')i i, = Z Qi inisTis fOT 1,00 € {1,...,n} x € R"
13 =1 Ax™2 e slZn]
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Computing Products

.A,Xm_2
((m—2) .n™ ™2 multplies + n™ 2 additions) - n? entries = (m — 1)n™

exploit symmetry to reduce cost to O(n" /m!)

Axm 1 = (Ax™?)x

2n? operations

Ax™ = (Ax™ 1) Tx

2n operations
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Generalized Eigenproblem s (2
Adaptive Power (GEAP) Method o

xg < Xo/ || %o
for k=0,1,... do
Precompute Ax?”, fBX}f“_Q, Ax?‘l, fBXZL—l, AxTY, Bx* €= O(n™/m!) work
A — AxP/Bx?
B =1 = local maxima
H;, + W B =-1 = local minima
Adaptive Shift
ay < Smax{0, (7 — Amin(BHg))/m} < P i O(n3) work
f(k_|_1 < /8(AXZL_1 — )\kaXZL_l + (Oék —+ )\k)BX?Xk)

Xk+1 = Xit1/ || Xp41]]

end for

Pros: Extremely simple and fast
Cons: Requires multiple starting points
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Comparison to Other Work

= Polynomial Solver
= E.g., Nsolve in Mathematica
= Does not scale

= SS-HOPM: Shifted Symmetric Higher-Order Power Method
(Kolda & Mayo, 2011)
= Only solves one special case of generalized eigenpair problem
= Does not have adaptive shift
= QOtherwise method is identical

= Han’s Method (Han, 2012)
= Unconstrained optimization: f(x) = (Bx")?/2m — BAX™ /m
= Uses any optimization method (e.g., L-BFGS)
= Did not always converge to generalized eigenpair in our experiments
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Z-eigenpairs: B = Identity Tensor

The identity tensor (denoted E) is defined as

Exm 1 = ||me_1X

\ Only defined for m even. y

g Z-Eigenpair N
(Qi 2005, Lim 2005)
Ax™ 1 = \x

subject to ||x|| =1 and (A\,x) € R x R"
_sub] x| (A %) )

Special case of generalized eigenpair with

B==¢E
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Example: Z-eigenpairs

All eigenpairs
Tr computed via
Mathematica.
057 _ ~ 0.5 - = 3
/
|
0 0
-0.5 -0.5
33
-1 - - - -1 ' ’ - -
1 0.5 0 -0.5 -1 -1 -0.5 0 0.5 1
-1.09 -0.7 -0.3 0.09 0.49 0.89
I [ T

White = Local Max, Gray = Local Min, Black = Saddle Point
A e St3l B =g ¢ s
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Z-Eigenpairs: Adaptive Shift is M (=
Faster than Fixed Shift o

A e SH3 B — g ¢ sl43] Median Iterations

M Adaptive Shift mShift=2 m Shift =10

=  Comparison to SS-HOPM
(fixed shift) 261

= 100 random starts
=  Three local maxima

192 185

= Convergence:

| Az - Al <100
= Choosing shift too small (e.g.,

zero) means the iterations

will never converge -
= Choosing shift too large leads 49 34 45

30 26

to slow convergence

= Adaptive shift is much faster
than fixed shift!

0.8893 0.8169 0.3633
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Randomly Generated DR
Generalized Eigenproblems

Question: How do we generate a random positive definite tensor?

Theorem: Let S be a symmetric matrix. Let (i, x) be an eigenpair of S
(with | | x| |=1). Define an m-way tensor B such that

mn mn
Disovins = D D CjaoimSings S
71=1 Im=1

Then (\,x) is an eigenpair of B with A = ™. Moreover, By™ > min; (u,)™

Note: To keep B from being nearly indefinite, the smallest magnitude
eigenvalue of S must be relatively large since it is raised to the mth power
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Random Generalized Eigenpairs: @ (&
GEAP versus Han’s Method o

Frequency in 1000 random starts

B GEAP HEHan

800
700
600
500
400
300
200
100

683
718
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Random Generalized Eigenpairs: M (=
GEAP versus Han’s Method o

Mean Time
B GEAP MH Han
0.35
0.3
0.25
0.2
0.15

0.1
0.05
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Conclusions and Other Work

= Generalized tensor eigenproblem = Related Work
Ax™ 1 — \Bx™ 1 - Symmgtric computations.(SISC, 2014)
] n = With Schatz, van de Geijn, Low @ UT
subject to ()\: X) ERXR = Reduce storage of symmetric tensor by

O(m!) without sacrificing performance
=  We reformulated GTEP as nonlinear

program
= Monotonic algorithm for optimizing

=
(-2
N

g 4
;

e e
o N b
=N
o

Speedup relative to dense

Storage (Dense) / Storage (BCSS)
-

on the unit sphere ; , N J
= Any C2 function, not just GTEP o 1 ’/"
= We propose adaptively choosing shift to ;--;": s B ‘;4 N
ensure convexity tensor order (m) tanSor order ()
= Open questions = Poisson tensor decomposition
= Scalability = “Count” tensors with Chi (SIMAX, 2012)
= Particular min/max eigenpair? = Speed improvements with Hansen,
= Saddle points? Plantenga (arXiv:1304.4964, 2013)

For more info: Tammy Kolda, tgkolda@sandia.gov

* Kolda and Mayo, Shifted Power Method for Computing Tensor
Eigenpairs, SIMAX 32(4), 2011

* Kolda and Mayo, An Adaptive Shifted Power Method for
Computing Generalized Tensor Eigenpairs, arXiv:1401.1183

log( II(I“-l\diol )
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