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Outline

 Motivation

* Three projects
— SCIRun / BioMesh3D

« Callahan, M., Cole, M., Shepherd, J., Stinstra, J., Johnson, C.,
“BioMesh3D: A Meshing Pipeline for Biomedical Computing,”
accepted to a special biomedical issue of Engineering with
Computers.

— Dissertation and ongoing research

* J.F. Shepherd, “Topologic and Geometric Constraint-Based
Hexahedral Mesh Generation,” Doctoral Dissertation, University of
Utah, 2007.

— SNL’s pCAMAL

* Pebay, P., Stephenson, M.B., Fortier, L., Owen, S., Melander, D.,
“pCAMAL: An Embarrassingly Parallel Hexahedral Mesh
Generator,” Proceedings, 16" International Meshing Roundtable,
Oct. 2007.

 Conclusion
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Motivation

“Ironically, as numerical analysis is applied to larger and
more complex problems, non-numerical issues play a larger
role. Mesh generation is an excellent example of this
phenomenon. Solving current problems in structural
mechanics or fluid dynamics with finite difference of finite
element methods depends on the construction of high-
quality meshes of surfaces and volumes. Geometric design
and construction of these meshes are typically much more
time-consuming than the simulations that are performed
with them.”

« John Guckenheimer, “Numerical Computation in the
Information Age” in June 1998 issue of SIAM News.
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Capacity and Resolution

ca. 1988 ca. 1995

200 dof 40,000 dof
Shellshock 2D NASTRAN

800K dof >10M dof
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Capacity and Resolution

ca. 2002 2007-2008?
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. . Neural Fiber Bundles (Zebra Fish)
Endoplasmic Reticulum

(courtesy of Liz Jurrus & Chi-Bin Chien, University of Utah and
Winfried Denk, Max Planck Institute for Medical Research)

(courtesy of Bridget Wilson, et al.

University of New Mexico)
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%‘ BioMesh3D

 Goals:

— Develop a suite of tools (pipeline) for efficiently
generating meshes for biomedical simulation

— Meshes must have reasonable quality for simulation

— Tools should be available for general public release
(open-source)

— Pipeline should be expandable to new tools/techniques.
— Easy-to-use, flexibility
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BioMesh3D pipeline

(including: (including:
—> Segmented Volumes, Hex Output Mesh > Material Properties,
Point Data, Boundary Conditions,
and Triangle meshes) Tet Initial Conditions, etc.)
_ - | Apply Simulation Apply Simulation B
- Constraints Constraints Tt~
Generate l Improve Generate l Improve Mesh
—»  Triangle +» Triangle & Volumetric » Volumetric Quality
Boundaries Surfaces Meshes Meshes Verification
Including: Including: Including:
Triangle Decimation, Tetrahedral Meshing Topology Smoothing
Surface Remeshing, Hexahedral Meshing Topology Optimization
Geometric Smoothing, Refinement

Topology Smoothing,
Topology Optimization
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Pipeline tools
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Element Count

Element Quality Distribution
for Pediatric Torso Model using TetGen
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Pipeline Examples
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Mesh generated by J. Shepherd
Model courtesy of Simon Warfield

Mesh generated by Marty Cole, UofU
Model courtesy of Ellisman, et al., UCSD (NMCIR and

Cell-Centered DataBase (CCDB))
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Hexahedral mesh generation for biomedical
models
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Methods —
Sheet Insertion and Extraction
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' Methods —

Sheet Insertion (Pillowing)

Given a hexahedral mesh (not necessarily octree) and a trianale
mesh on a manifold
1. Separate the hexahedra into three groups
1. Hexes intersected by the triangle mesh
2.  Hexes to one side of the triangle mesh (Sidel), and
3. Hexes on the opposite side of the triangle mesh (Side2).

2. Placing the intersected hexes with one of the two sides, insert
two sheets of hexahedra between the resulting groups
projecting the new nodes to the original triangle mesh.
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Multi-surface
Hexahedral Mesh Generation

-Original model is provided courtesy of Inria by the AIM@SHAPE Shape Repository
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Element Count
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Multi-surface
Hexahedral Mesh Generation

+ Example (skull) -

Skull Element Quality Distribution
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Skull bone shown in blue
Cranial cavity shown in magenta
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10.81.0)

|clisp|
6.49588-20

5.5678e-20
4.6308e-20
3.711%-20
2.783%e-20

- 1.8553e-20
-9.2797e-21
-0

Cnntnur F\H of ms;n Ejmapu
Derormation ( x6 ¥45898+16): displ of TIME ANALYSIS, step 18-6

Impact analysis courtesy of Dr. Marco Stupazzini,
Department fuer Geo- und
Umweltwissenschaften Sektion Geophysik Ludwig-
Maximilians-Universitaet Theresienstrasse 41
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Sandia -Models A, C, D, E are provided courtesy of ANSYS
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' Multi-surface Hexahedral

Mesh Generation

Created for S. Shontz's IVC Collaboration with F. Lynch, M.D. (PSU Hershey Medical Center),
M. Singer (LLNL), S. Sastry (PSU), and N. Voshell (PSU)
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Parallel Mesh Generation
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}' The Problem

- National laboratories need very large meshes
— Currently 10+ million unstructured hex elements

— Future 100 million to 1 billion unstructured elements

« Cannot generate large mesh on user workstation
— Limited by memory and processor power
— Limited by size of file exported to analysis software
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Two-Stage Solution

Single processor Multiple processors .

N
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%‘ Test Environment

« SNL Catalyst Cluster

— 128 dual core Xeon processors (3.06 GHz)
— 2 GB or memory per processor

— Gigabit ethernet

— 4X Infiniband high-speed network

— Linux 2.6.17.11 kernel
— TORQUE resource manager (batch scheduling)
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Similar Cubes

« Subdivide cube along axes
— Uniform subdivisions shown

— Other subdivision schemes give rectangular solids
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Similar Cubes

* 1M hexes
— 1024 cubes of 1000 hexes
— Overhead dominates

Speed-up At Constant Total Work
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* 32M hexes
— 32 cubes of 100,000 hexes

g
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log2(Speedup)

log2(No. CPUs)

‘—0— MHex —=32MHex  Optimum ‘
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Similar Cubes

Speed-up At Constant Work per CPU * 1,000,000 hexeSIprocessor
— 1M to 32 M hexes

log2(Speedup)

0 1 2 3 4 5
log2(No. CPUs)

—#— Cubes —e— Optimal
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INL Reactor Core Model
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INL Reactor Model

Constant Total Time
800
m
S 600 -
o
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Number of CPUs
10.5 million elements
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}. Load Balancing

« Source surface partitioning
— 1.5 million hex elements

— Single volume: 54 sec. to mesh on one processor
— 8 sub-volumes: 15 sec. to mesh on two processors
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Parallel Hex Meshing

* Big models
— 33.4 million hexes

— Too big for serial Cubit

— Too big for most desktop
workstations

Mesh generated by Philippe Pebay (SNL), Mike Stephenson (MBS&A)
@ Sandia Model courtesy of Scott Lucas, Glen Hansen (INEL)
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p Conclusions

 BioMesh3D

- Hexahedral mesh generation for biomedical
models

- Parallel mesh generation
— pCAMAL is scalable for large models

— Serial decomposition controls overall mesh time

— Future work: surface meshing in parallel
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