
Online Submission ID: 0

A Simple and Efficient Sampling Method for Generating
Colormaps of Large Data

Category: Technique

(a) VisIt (b) ParaView (c) Prominent values

Fig. 1. Temperature inside a rotating disk reactor. Sampling is able to identify constant boundary conditions and highlight them where
they would otherwise be obscured by the full scalar value range.

Abstract— First impressions from initial renderings of data are crucial for directing further exploration and analysis. In most visual-
ization systems, default colormaps are generated by simply linearly interpolating color in some space based on a value’s placement
between the minimum and maximum taken on by the dataset. We design a simple sampling-based method for generating colormaps
that highlights important features. We use random sampling to determine the distribution of values observed in the data. The sample
size required is independent of the dataset size and only depends on certain accuracy parameters. This leads to a computationally
cheap and robust algorithm for colormap generation. Our approach (1) uses perceptual color distance to produce palettes from color
curves, (2) allows the user to either emphasize or de-emphasize prominent values in the data, (3) uses quantiles to map distinct
colors to values based on their frequency in the dataset, and (4) supports the highlighting of either inter- or intra-mode variations in
the data.

1 INTRODUCTION

Color is the most relative medium in art.
— Josef Albers, Interaction of Color

Color is one of the most prevalent tools used in scientific visualiza-
tion and possibly the easiest to misuse – knowingly, or, as this paper
considers, unknowingly. As Albers notes, and cognitive neuroscience
has established experimentally, human perception of color is only rel-
ative to its surroundings. In part, at least, this is due to the many orders
of magnitude in brightness and contrast our vision must span to be use-
ful in a world with day and night. Using color, it is possible to – within
a single image – identify spatial trends at varying scales, discriminate
between neighboring values, and even gauge absolute values to some
degree.

However, there are very few tools to design the maps between num-
bers we wish to illustrate and colors that will aid in their undistorted
perception1. General-purpose visualization tools are often given data
with no description of its source, no units of measurement, no accuracy
of its computation or measurement, no measurements of its trends, nor
any indication how importance is defined. Large datasets that cannot
be held in memory (or require a high-performance computer with dis-
tributed memory) may not provide easy access to such summary in-
formation. The last of these often missing traits – how importance
is defined – is of prime significance when choosing a colormap and

1It is arguably impossible to say that a particular person’s perception is bi-
ased or unbiased, but it may be possible to quantify how a population’s percep-
tion of a particular feature is proportional to the evidence for it provided by the
data relative to other features in the same data.

the least possible to infer without expert knowledge. If commonly-
occuring values and patterns are important and variations are noise to
be ignored, then colormaps with little change over the scales of unim-
portant features will be useful so that viewers can focus on important
features without distraction. Otherwise, visualizations of the scalar’s
gradient (for smoothly- varying functions) or alternating colors of high
contrast (for both discrete and smooth functions) can bring out impor-
tant details.

To create more informative colormaps, there are many different data
analysis techniques that could be used to determine summary trends in
the data. For example, information regarding the relative frequencies
of values in the data as well as their spatial relationships in the image
could be incorporated into the colormap design. However, analysis
techniques that provide detailed information regarding the data could
require pre-processing stages, which make them cost-prohibitive when
visualizing large data interactively. As a result, default colormaps are
typically defined by linearly interpolating dataset function values be-
tween the maximum and minimum in the range of the dataset to min-
imize costs. While computationally inexpensive, this approach dis-
regards the distribution of values observed within the data and incor-
rectly assumes that the color space is linear. In this paper we introduce
an efficient method to generate colormaps via random sampling that
addresses both of these issues. Theoretically, our algorithm is sim-
ple and provably robust. In practice, with a negligible overhead our
algorithm yields images that better highlight features within the data.
Most importantly, the required sample size depends only on desired
accuracy parameters and is independent of the dataset size, hence scal-
ability is not an issue at all.

Our contributions in detail are as follows:

1

SAND2013-4171C

• We introduce a simple sampling-based algorithm (with a proof of
robustness) for identifying important values and ranges in data.

• Given important values in the data, we provide an automated
technique for generating discrete and/or continuous color maps.

• We demonstrate results using a number of real and synthetic ex-
amples.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work and in Section 3 we introduce relevant back-
ground and terminology in color theory. We describe our algorithm in
Section 4 and provide a proof of robustness in Section 5. Finally, in
Sections 6 and 7, we demonstrate results and and discuss conclusions,
respectively.

2 RELATED WORK

The most well-known work on color in scientific visualization is
Brewer’s treatise on the selection of color palettes [3–5]. Her the-
sis and much surrounding literature focus on choosing palettes that 1)
avoid confounding intensity, lightness, or saturation with hue either by
co-varying them or using them to convey separate information; and 2)
relate perceptual progressions of color with progressions of values in
the data to be illustrated or – when the values being illustrated have no
relationship to each other – to avoid perceptual progressions of colors
so that the image does not imply a trend that is absent in the data. The
work of [12] discusses fundamental flaws with the commonly used de-
fault “rainbow” colormap and presents results on diverging color maps
which have since been adopted by many in the community as they per-
form much better than the rainbow colormap in scientific visualization
settings.

Other significant work has studied the generation of transfer func-
tions for volume rendering. Here, work includes the use of entropy
to maximize the “surprisal” and thus the information content of the
image [2].The work of [8, 13] compare a number of transfer function
generation techniques and provide good high-level overviews of the
research in this area.

Finally, tone mapping [9] has been used to adjust images that con-
tain more contrast than their presentation medium is able to provide
by modeling how the human visual system deals with contrast.

3 BACKGROUND

A color model is a mathematical abstraction in which colors are rep-
resented as tuples of values. Common color models include RGB,
CMYK, and HSV. These and other color models differ in how the tu-
ples of values are interpreted and combined to achieve the spectrum of
attainable color values. For example, RGB uses additive color mixing,
storing values of red, green, and blue. Not all devices can represent
and capture colors equally. A color space defines which portions of
the spectrum of colors can be represented for a particular device. The
gamut of a device is defined to be the subset of the color space that
can be represented, and those colors that cannot be expressed within
a color model are considered out of gamut (e.g. red can be expressed
in an RGB color space, but cannot be expressed in a CMYK color
space). CIELAB is a color space that was created to serve as a device-
independent model to be used as a reference. It describes all colors
that the human eye can see and is defined by three coordinates: L
represents the lightness of a color, a represents its position between
green and magenta/red, and b represents its position between yellow
and blue.

The distance between colors is often defined in terms of the Eu-
clidean distance between two colors in CIELAB space and is typically
referred to as ∆E. Different studies have proposed different ∆E values
that have a just noticeable difference (JND). Often a value of ∆E≈ 2.3
is used, however, several variants on the ∆E function have been in-
troduced to address perceptual non-uniformities in the CIELAB color
space. These non-uniformities can be visually depicted by MacAdam
ellipses, which are elliptical regions that contain colors that are consid-
ered indistinguishable. These ellipses were identified empirically by
MacAdam [10] who found that the size and orientation of ellipses vary
widely depending on the test color. Figures 2(a) and 2(b) demonstrate
the chromaticities (the quality of a color independent of its brightness),
visible to the average human. In Figure 2(a) the white triangle is the
gamut of the RGB color space and a palette curve and palette point

(a) (b)

Fig. 2. The horse-shoe shape in these figures demonstrates the chro-
maticities visible to the average human. In (a) the white triangle is the
gamut of the RGB color space and a palette curve and palette point are
shown in this space. In (b) multiple MacAdam ellipses are shown to
highlight perceptual non-uniformities in the color space.

are shown in this space. In Figure 2(b) multiple MacAdam ellipses are
shown to highlight perceptual non-uniformities in the color space.

4 MAPPING SCALAR VALUES TO COLOR

We introduce a simple algorithm for mapping data values to color ac-
cording to the distribution of scalar values within the data. We assume
the following are provided as input to the mapping algorithm: 1) a list
of palette curves and palette points; and 2) a list of prominent values in
the data and a cumulative distribution function (CDF) of each range in
between prominent values. In Section 5 we describe a provably robust
sampling-based approach for the quick estimation of such CDFs and
prominent values.

Given the input, we first assign a unique color to each prominent
value. Next, we discretize each palette curve pm into km individual
palette points of ∆E≈ 2.3 (this value is tunable), see Figure 3(b). As
noted in Section 5, each CDF comprises a collection of n disjoint and
contiguous intervals, B1, . . . ,Bn. Each Bi has an associated minimum
function value f min

i and maximum funtion value f max
i , simply corre-

sponding to the left and right endpoints of Bi. Furthermore, each Bi
also has an associated set of samples, whose size is denoted by s(Bi).
See the bottom of Figure 3(b), where the relative heights of bars in Bi
denote the size of s(Bi).

These intervals/sets represent an approximate CDF in that (roughly
speaking), the CDF value at the right endpoint of Bi is given by
∑

i
j=1 s(B j)/∑

n
j=1 s(B j).

Given a scalar value, f , we compute an interpolation factor, ft ,
based on the position of f in the CDF. (Again, refer to Figure 3(b).)
To do this we identify the bucket Bi that contains f and compute:

t f =
∑

i−1
j=1 s(B j)+

(
f− f min

i
f max
i − f min

i

)
∗ s(Bi)

∑
n
j=1 s(B j)

Once we have identified t f , we compute the final color, c f , for a
given palette curve, pm, which has been discretized into km palette
points as

j = t f ∗ km,

t j = j−floor(j),

c f = c j + t j(c j+1− c j).

Implementation details: We allow the user to define both inter-mode
and intra-mode colormaps. In an inter-mode color map, we do not alter
the provided palette curves, therefore, for each range between promi-
nent values, we distribute the colors in the provided palette curves ac-
cording to the distribution of the values within their associated range.
When a user wishes to emphasize intra-mode differences within a
range between prominent values, we introduce contrast by modifying

2

Online Submission ID: 0

the lightness of alternating points along the discretized palette curve
in CIELAB space. Furthermore, prominent values can be empha-
sized or de-emphasized within an image by modifying the lightness of
the associated color in CIELAB space. We use the Little CMS color
engine [11] to perform all transformations between color spaces and
compute ∆E distances between colors.

(a)

(b)

Fig. 3. In figure (a) a simple linear interpolation scheme is depicted.
In (b), using our technique, we identify two prominent values and two
ranges. Using our CDF-based interpolation scheme we obtain a differ-
ent color for the function value f .

5 PROMINENT VALUES AND THE RIGHT INTERVALS

In this section we describe the sampling approaches used to determine
prominent values and important subranges of a data set. In general,
the default colormaps tend to linearly interpolate between the mini-
mum and maximum values in the data. In other words, they effec-
tively assume that the data distribution is uniform between these val-
ues. However, this is not always the case, and we would like to be able
to identify significant deviations from this behavior.

We employ two simple sampling algorithms for this purpose. The
first algorithm does a direct sampling to determine frequent values in
the data set. The second algorithm constructs a series of intervals, such
that the frequency of data within each interval is roughly the same.
Note that a large variance in the lengths of these intervals indicates
a non-uniformity in data value distribution. These intervals represent
our approximate CDF. Roughly speaking, for all k, the probability of
the data lying in the first k intervals (which is the CDF value upto this
point) is proportional to k.

We treat our data as a discrete distribution, where for each value
r, pr is the fraction of the data set where the value r is attained (So
{pr} describes a distribution over the range of the data set). We use
D to denote this distribution and R to denote the support. For any
set S (often an interval of the real line), we use P(S) to denote the
probability mass of S.

The analysis of both algorithms follow from straightforward ap-
plications of Chernoff bounds. We state the multiplicative Chernoff
bound (refer to Theorem 1.1 in [7]) for sums of independent random
variables.

Theorem 5.1. [Chernoff bound] Let X1,X2, . . . ,Xk be independent
random variables in [0,1] and X = ∑

k
i=1 Xi.

• (Lower tail) For any ε > 0,

Pr[X < (1− ε)E[X]]≤ exp(−ε
2E[X]/2).

• (Upper tail) For any ε > 0,

Pr[X > (1+ ε)E[X]]≤ exp(−ε
2E[X]/3).

• (Upper tail) For any t > 2eE[X],

Pr[X > t]≤ 2−t .

In our theorems, we do not attempt to optimize constants. The run-
ning time of our algorithms does not depend on the data size, and the
theorems are basically proof of concepts. Our empirical work will
show that the actual samples sizes required are quite small. For con-
venience, we use c and c′ to denote sufficiently large constants.

5.1 Finding important elements
Our aim is to determine values of r such that pr > τ is large, where
τ ∈ (0,1) is a threshold parameter.

find-important(s,τ)
Inputs: sample size s, threshold τ

Output: the “frequent set” of range elements, I.

1. Generate set S of s independent random samples from D
2. Initialize important set I = /0.
3. For any element r ∈D that occurs more than sτ/2 times in S,

Add r to I.
4. Output I.

The following theorem states that (up to some approximation), I is
indeed the set of frequent elements. The constants in the following are
mainly chosen for presentation. (Instead of pr < τ/8 in the following,
we can set it to τ/α , for any α > 1, and choose s accordingly.)

Theorem 5.2. Set s = (c/τ) ln(c/(τδ)). With probability > 1− δ

(over the samples), the output of find-important(τ,δ) satisfies
the following.

If pr > τ , then r ∈ I.
If pr < τ/8, then r /∈ I.

Proof. We first prove that with probability at least 1− δ/2, for all
pr > τ , r ∈ I. Then we show that with probability at least 1−δ/2, for
all pr < τ/8, r /∈ I. A union bound then completes the proof.

Consider some r such that pr > τ . Let Xi be the indicator ran-
dom variable for the event that the ith sample is r. So E[Xi] = pr and
all Xis are independent. We set X = ∑i≤s Xi and apply the Chernoff
lower tail of Theorem 5.1 with ε = 1/2. Hence, Pr[X < E[X]/2] ≤
exp(−E[X]/8). Note that E[X] > sτ . We obtain Pr[X < sτ/2] ≤
Pr[X < E[X]/2]≤ exp(−E[X]/8)≤ exp(−sτ/8)≤ δτ/16. There are
at most 1/τ values of r such that pr > τ . By the union bound, the prob-
ability that there exists some such value of r occurring less than sτ/2
times is at most δ/16. Hence, with probability > 1−δ/16, ∀pr > τ ,
r ∈ I.

Define set A = {r|pr ≥ τ/8}, and R′ = R \A. The second part is
stated as Lemma 5.3 below with α = τ/8. We get that with probability
> 1− δ/2, all r ∈ R′ individually occur less than sτ/2 times. Hence,
none of them are in I.

Lemma 5.3. Let α ∈ (0,1) and s > (c/8α) ln(c/(8αδ)). Consider a
set R′ such that ∀r ∈ R′, 0 < pr ≤ α . With probability > 1−δ/2, the
following holds. For all r ∈ R′, the number of occurrences of r in s
uniform random samples from D is at most 4sα .

Proof. We apply Claim 5.4 (given below). This gives a series of in-
tervals R1,R2, . . . ,Rn, such that for all m < n, P(Rm ∩R′) ∈ [α,2α].
Also, P(Rn∩R′)≤ 2α .

Consider some Rm for m < n, and let Yi be the indicator random
variable for the ith sample falling in Rm. We have E[Yi] ∈ [α,2α] and
E[Y] ≤ [αs,2αs] (where Y = ∑i≤s Yi). Since the Yis are independent,
we can apply the first Chernoff upper tail with ε = 1. Hence, Pr[Y >
4sα]≤ exp(−αs/3) = δα/3.

Now focus on Rn and define Y analogous to above. If P(Rn∩R′)>
α/2, we can apply the previous argument with ε = 1. Again, we de-
duce that Pr[Y > 4sα] ≤ exp(−sα/6) = δα/3. If P(Rn ∩R′) < α/2,
we apply the second Chernoff tail with t = 4sα (observing that 4sα ≥
(2e)α/2) to deduce that Pr[Y > 4sα]≤ 2−4sα ≤ δα/3.

We apply the union bound over all Rm for m ≤ n (at most 1/α +1
is number), so the probability that there exists some Rd that appears

3

more than 4sα times is at most δ/2. Hence, with probability at least
1−δ/2, no element in R′ can appear more than 4sα times.

Claim 5.4. Let α ∈ (0,1). Consider a set R′ such that ∀r ∈ R′, 0 <
pr ≤α . There exists a sequence of numbers minr∈R′ r = z1,z2, . . . ,zk =
maxr∈R′ r (k≥ 2) such that for all i < k−1, P([zi,zi+1)∩R′)∈ [α,2α]
and P([zk−1,zk])≤ 2α .

Proof. This is done through a simple iterative procedure. We start
with z1 = minr∈R′ r. For zi, we describe how to find zi+1. Imagine zi+1
initialized to zi and continuously increased until the P([zi,zi+1]∩R′)
(note that we use a closed interval) exceeds 2α . (If zi+1 crosses
maxr∈R′ r, then we have found the last interval and terminate this pro-
cess.) Now, P([zi,zi+1)∩R′) (the open interval) must be less than 2α ,
or we would have stopped earlier. Furthermore, P([zi,zi+1)∩R′) =
P([zi,zi+1]∩R′)− pzi+1 ≥ 2α−α = α .

5.2 Finding the right intervals
Our aim is to construct a series of disjoint intervals that (almost)
equally partition the probability mass. To gain some intuition, consider
a positive integer v and a sequence of numbers y0,y2, . . . ,yv where
y0 = minr∈R r, yv = maxr∈R r, and for all i < v, P([yi,yi+1)) = 1/v.
Our algorithm will try to find these intervals (for a parameter v). Of
course, such intervals may not even exist, due to the discrete nature of
D . Nonetheless, we will try to find suitable approximations. For this
reason, we assume that there are no prominent values in D . (This is an
acceptable assumption, since prominent values can be predetermined
by find-important.)

There are two parameters for find-intervals: the sample size
s and the block size b. For convenience, assume b divides s. The
output is a series of s/b intervals, each with (provably) approximately
the same probability mass. As we mentioned earlier, this constitutes
an approximation to the CDF, since the probability mass of the first k
of these intervals will be (approximately) proportional to k.

find-intervals(s,b)
Inputs: sample size s, block size b
Outputs: Intervals B1,B2, . . .

1. Generate set S of s independent random samples from D .
2. Sort these to get the (ordered) list {x1,x2,x3, . . . ,xs}.
3. Output the intervals B1 = [x1,xb), B2 = [xb+1,x2b), etc. In
general, the ith interval Bi is [x(i−1)b+1,xib) and there are s/b
blocks. The samples in this interval form the associated set, so
s(Bi) = |Bi∩S|.

This main theorem involves some play of parameters, and we ex-
press s and b in terms of an auxiliary (integer) parameter v. Again, the
constants chosen here are mainly given for some concreteness and no-
tational convenience. We use the notation A ∈ (1±β)B as a shorthand
for A ∈ [(1−β)B,(1+β)B].

Theorem 5.5. Set s = cv ln(cv/δ) and b = s/v. Suppose there ex-
ists no r ∈ R such that pr > 1/100v. With probability > 1− δ , the
following holds. For each output interval B, P(B) ∈ (1± 1/20)/v.
Furthermore, P((−∞,x1)) and P((xs,+∞)) are at most 1/50v.

Proof. We first apply Claim 5.4 with α = 1/100v and R′ = R, to get
the sequence z1,z2, . . . ,zk. We have P([zi,zi+1)) ∈ [1/100v,1/50v] for
i < k−1 and P([zk−1,zk])≤ 1/50v. We prove the following lemma.

Lemma 5.6. Set s = cv ln(cv/δ). Let Zi, j be the number of samples
falling in interval [zi,z j). With probability at least 1− δ/2, for all
pairs i, j, Zi, j ∈ (1±1/20)sP([zi,z j)).

Proof. Fix interval [zi,z j). Let Xm be the probability of the mth sam-
ple falling in [zi,z j). We have E[Xm] = P([zi,z j)) ≥ 1/100v and all
Xm’s are independent. Also, Zi, j = ∑m≤s Xm, and E[Zi, j] ≥ s/100v.
The upper Chernoff tail yields Pr[Zi, j < (1 − 1/20)sP([zi,z j))] ≤
exp(−sP([zi,z j))/800). By a union bound over both tails and plug-
ging in the bound P([zi,z j))≥ 1/100v, the probability that Xi, j /∈ (1±
1/20)sP([yi,y j)) is exp(−s/(800 ·100v))+ exp(−sP([yi,y j))/(1200 ·

100v)). Doing the calculations (for sufficiently large constant c), this
probability is at most δ/cv2. A union bound over all intervals (at most(100v+1

2
)

of them) completes the proof.

We apply Lemma 5.6, so with probability 1−δ/2, for all i, j, Zi, j ∈
(1± 1/10)sP([yi,y j]). Now, we apply Lemma 5.3 with α = 1/100v.
With probability > 1−δ/2, no element occurs more than s/25v times.
By a union bound, both these hold with probability > 1− δ . Under
these conditions, we complete our proof.

Fix a block B, and let [yi,y j) be the smallest such interval that con-
tains B. Let [yi′ ,y j′) be the largest such interval inside B. Observe that
P([yi,y j))−2 ·(1/50v)≤ P(B)≤ P([yi,y j)) and P([yi′ ,y j′))≤ P(B)≤
P([yi′ ,y j′))+2 · (1/50v).

Let ` denote the number of sample points in B = [xh,xh+1). Obvi-
ously, ` ≤ b, by construction. Also, ` is at least b minus the number
of sample occurrences of xh+1. So ` ≥ b− s/25v = (1− 1/25)s/v.
Since ` ≤ Xi, j, we get (1− 1/25)s/v ≤ (1+ 1/20)sP([yi,y j)). Since
` ≥ Xi′, j′ , s/v ≥ (1− 1/20)sP([yi′ ,y j′). Relating the probabilities to
P(B), we get (1− 1/25)/v ≤ (1+ 1/20)(P(B) + 1/25v) and 1/v ≥
(1− 1/20)(P(B)− 1/25v). Rearranging the terms, we complete the
proof for output interval B.

No samples fall in the intervals (−∞,x1) and (xs,+∞). Hence, they
cannot completely contain any interval of the form [yi,yi+1], and their
probabilities are at most 1/50v.

6 RESULTS

In this section we demonstrate the results of applying our colormap
generation algorithm to a variety of datasets. These include the Man-
delbrot dataset, a rotating disk reactor, and two combustion data sets.
We compare images of the data created with default colormaps of sev-
eral visualization tools to colormaps created using our technique.

The Mandelbrot dataset is a synthetic function that can be sam-
pled at any resolution. By contouring the volumetric function using
a geometric sequence of isovalues, we obtained auxiliary data used to
characterize how prominent value detection behaves as distinct values
become near enough to appear as a continuous range, see Figure 6. We
also run the algorithm on the data without contouring in Figure 7.

0

0.1

0.2

0.3

0.4

200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 900 1000

Fig. 4. The probability density function (PDF, top) and cumulative den-
sity function (CDF, bottom) of the rotating disk reactor, shown in blue
and obtained from the prominent values and blocked ranges. Promi-
nent values and their probabilities are shown in red.

The rotating disk reactor, shown in Figure 1, is a steady-state sim-
ulation of continuous vapor deposition (CVD) carried out by MP-
Salsa [14, § D.2]. A notch has been removed for illustrative purposes.
It is a small dataset that contains thermodynamic state variables, veloc-
ity, and chemical species concentrations at each node. The simulated
region is a fluid-filled cavity between a concentric tube and rod where
reactants flow up from the unobstructed volume (bottom), across the
heated rod, and exit at the annulus (top). Of interest is the fact that
temperature boundary conditions have been imposed: the outer cylin-
drical wall is held at an ambient temperature of 293.15 K, the inner
rod cap is heated to 913.15 K, and the fluid entering the chamber is a
constant 303.15 K. Because the two lower temperature conditions are
very near each other relative to the heated rod cap, it is impossible to
distinguish them in the default views of ParaView and VisIt. However,

4

Online Submission ID: 0

by passing the temperature through the sampling algorithm above, we
obtain the PDF and CDF shown in Figure 4 , along with associated
prominent values that pull out these features. By assigning colors out-
side the prominent range to these prominent values, the difference is
apparent.

0.1	

1	

10	

100	

1	
 4	
 16	
 64	
 256	

se
co
nd

s	

processors	

HCCI	
 Li.ed	
 Ethylene	
 Jet	

Fig. 5. Our technique demonstrates good scalability as the number of
samples required by our algorithm is fixed according to accuracy param-
eters as opposed to data set size.

In addition to these two datasets we also demonstrate our results
on two combustion data sets: HCCI, and Lifted Ethylene Jet. These
datasets were generated by S3D [6], a turbulent combustion simula-
tion code that performs first principles-based direct numerical simula-
tions in which both turbulence and chemical kinetics introduce spatial
and temporal scales spanning typically at least 5 decades. The HCCI
dataset is a study of turbulent auto-ignitive mixture of Di-Methyl-
Ether and air under typical Homogeneous Charge Compression Igni-
tion (HCCI) conditions [1]. This simulation is aimed at understanding
the ignition characteristics of typical bio-fuels for automotive appli-
cations and has a domain size of over 175 million grid points. The
second simulation describes a lifted ethylene jet flame [15], involved
in a reduced chemical mechanism for ethylene-air combustion, with a
domain size of 1.3 billion grid points.

Figure 7 contains images comparing our technique with that of
Paraview for the Mandelbrot, HCCI, and Lifted Ethylene Jet data
sets. The first row demonstrates default color maps generated by Par-
aview for the Mandelbrot, HCCI, and Lifted Ethylene Jet data sets.
The second and third row contrast inter- vs. intra-mode differences
with the prominent values emphasized as colors with low lightness in
CIELab space, while the fourth and fifth row contrast inter- vs. intra-
mode idfferences with prominent values de-emphasized as colors with
high lightness in CIELab space. In particular, within the combustion
datasets, our approach visually depicts structures in the data that are
difficult to see in the default view. These structures cover a small rela-
tively small percentage of overall scalar domain, however these values
are observed with relatively high frequency within the data. We note
that our approach can be effective at identifying coherent structures in
spite of the fact that we are not integrating spatial information into our
estimates.

Scalability: Figure 5 highlights the scalability of our approach
for the Lifted Ethylene Jet and HCCI data sets. We performed our
experiments on Lens at the Oak Ridge Leaership Computing Facil-
ity. Lens is a 77-node commodity-type Linux cluster whose primary
purpose is to provide a conduit for large-scale scientific discovery via
data analysis and visualization of simulation data. Lens has 45 high-
memory nodes that are configured with 4 2.3 GHz AMD Opteron pro-
cessors and 128 GB of memory. The remaining 32 GPU nodes are
configured wiht 4 2.3 GHz AMD Opteron processors and 64 GB of
memory.

7 CONCLUSION

We introduced a sampling based method to generate colormaps. Our
algorithm identifies important values and ranges in data, and uses
these values to automatically generate discrete and/or continuous color

(a) Inter-mode

(b) Intra-mode

(c) Paraview

Fig. 6. These images show 32 contour values, each of which is identified
by our algorithm as a prominent value. Many of these isovalues lie
closely together and are difficult to differentiate using traditional default
color maps. Using our algorithm it is much easier to see that there are
in fact many individual surfaces.

maps. Our experiments showed the new colormaps yields images that
better highlight features within the data. The proposed approach is
simple and efficient, yet provably robust. Most importantly, the num-
ber of samples required by the algorithm depends only on desired ac-
curacy in estimations and is independent of the dataset size. This pro-
vides excellent scalability for our algorithms, as the required prepro-
cessing time remains constant despite increasing data as we move to
exascale computing. The algorithms are also efficiently parallelizable
and and yield linear scaling.

REFERENCES

[1] G. Bansal. Computational Studies of Autoignition and Combustion in
Low Temperature Combustion Engine Environments. PhD thesis, Univer-

5

(a) Paraview Mandelbrot (b) Paraview HCCI (c) Paraview Lifted Ethylene Jet

(d) Inter-mode Mandelbrot (e) Inter-mode HCCI (f) Inter-mode Lifted Ethylene Jet

(g) Intra-mode Mandelbrot (h) Intra-mode HCCI (i) Intra-mode Lifted Ethylene Jet

(j) Inter-mode Mandelbrot (k) Inter-mode HCCI (l) Inter-mode Lifted Ethylene Jet

(m) Intra-mode Mandelbrot (n) Intra-mode HCCI (o) Intra-mode Lifted Ethylene Jet

Fig. 7. The first row demonstrates default color maps generated by Paraview for the Mandelbrot, HCCI, and Lifted Ethylene Jet data sets. The
second and third row contrast inter- vs. intra-mode differences with the prominent values emphasized as colors with low lightness in CIELab space,
while the fourth and fifth row contrast inter- vs. intra-mode idfferences with prominent vlaues de-emphasized as colors with high lightness in CIELab
space.

sity of Michigan, 2009.
[2] U. Bordoloi and H.-W. Shen. View selection for volume rendering. In Vis

’05: Proceedings of the IEEE Visualization 2005, pages 487–494, 2005.
[3] C. A. Brewer. Guidelines for selecting colors for diverging schemes on

maps. The Cartographic Journal, 33(2):79–86, 1996.

[4] C. A. Brewer. A transition in improving maps: The ColorBrewer exam-
ple. Cartography and Geographic Information Science, 30(2):159–162,
2003.

[5] C. A. Brewer, G. W. Hatchard, and M. A. Harrower. ColorBrewer in
print: A catalog of color schemes for maps. Cartography and Geographic

6

Online Submission ID: 0

Information Science, 30(1):5–32, 2003.
[6] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,

S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski,
R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical sim-
ulations of turbulent combustion using s3d. Computational Science and
Discovery, 2:1–31, 2009.

[7] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analy-
sis of Randomized Algorithms. Cambridge University Press, 2009.

[8] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer func-
tions for interactive volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8(3):270–285, 2002.

[9] G. Larson, H. Rushmeier, and C. Piatko. A visibility matching tone re-
production operator for high dynamic range scenes. IEEE Transactions
on Visualization and Computer Graphics, 3(4), Dec. 1997.

[10] D. L. MacAdam. ”visual sensitivities to color differences in daylight”.
JOSA, 32(5):247–274, 1942.

[11] M. Maria. Little CMS: How to use the engine in your applications, 2012.
[12] K. Moreland. Diverging color maps for scientific visualization. In G. Be-

bis, R. D. Boyle, B. Parvin, D. Koracin, Y. Kuno, J. Wang, R. Pajarola,
P. Lindstrom, A. Hinkenjann, M. L. Encarnação, C. T. Silva, and D. S.
Coming, editors, Advances in Visual Computing, 5th International Sym-
posium, ISVC 2009, Las Vegas, NV, USA, November 30 - December 2,
2009, Proceedings, Part II, volume 5876 of Lecture Notes in Computer
Science, pages 92–103. Springer, 2009.

[13] H. Pfister, W. E. Lorensen, W. J. Schroeder, C. L. Bajaj, and G. L. Kindl-
mann. The transfer function bake-off (panel session). In IEEE Visualiza-
tion, pages 523–526, 2000.

[14] A. Salinger, K. Devine, G. Hennigan, H. Moffat, S. Hutchinson, and
J. Shadid. MPSalsa: A finite element computer program for reacting
flow problems, part 2 – users guide. Technical Report SAND96-2331,
Sandia National Laboratories, Sept. 1996.

[15] C. S. Yoo, R. Sankaran, and J. H. Chen. Three-dimensional direct numer-
ical simulation of a turbulent lifted hydrogen jet flame in heated coflow:
Flame stabilization and structure. Journal of Fluid Mechanics, 640:453–
481, 2009.

7

	Introduction
	Related Work
	Background
	Mapping scalar values to color
	Prominent Values and the Right Intervals
	Finding important elements
	Finding the right intervals

	Results
	Conclusion

