

SAND2013-4182C

Classification Systems for V&V Benchmark Data

ASME 2013 V&V Symposium

V. Gregory Weirs
Sandia National Laboratories
Albuquerque, NM

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

May 24, 2013

Why Are Validation Studies Inconclusive?

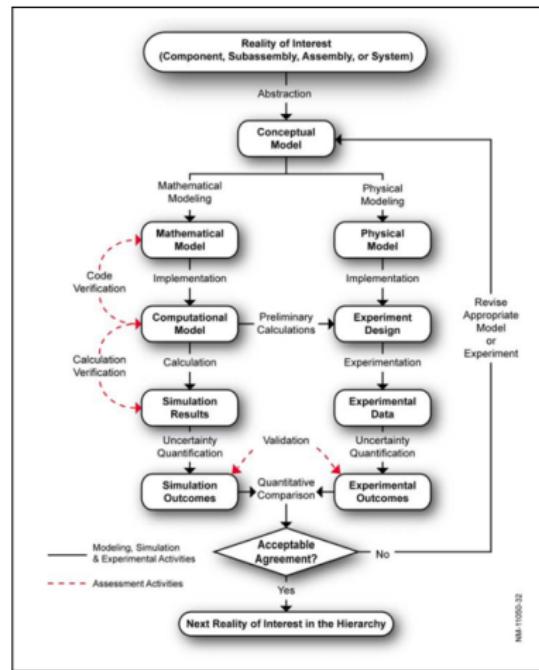
A validation study is **inconclusive** when no statement about model sufficiency can be made because of uncertainties in the experimental and/or simulation results.

Today we'll focus on the second case.

Where Do Simulation Error Bars Come From?

Ideally, simulation error bars include:

- Numerical error (solution verification)
- Parametric uncertainty (uncertainty quantification)


Ideally, we distinguish between them and track them separately.

In validation, we are trying to determine the model form error; to do so we must account for numerical errors and parametric uncertainties.

Synergy Improves Validation

The most successful validation studies involve:

- Computational analysts and experimentalists exchanging information **regularly and frequently**
- Dynamic feedback, or **synergy**: simulation results affect the experiments, and the experiments affect the simulations.

From the ASME Guide

Synergy Is Difficult to Achieve

Note that these features favor small scale experiments at the lower levels of a validation hierarchy.

- Can a different simulation team take advantage of this experimental data?
- What about the larger scale?
- What about future legacy experiments?

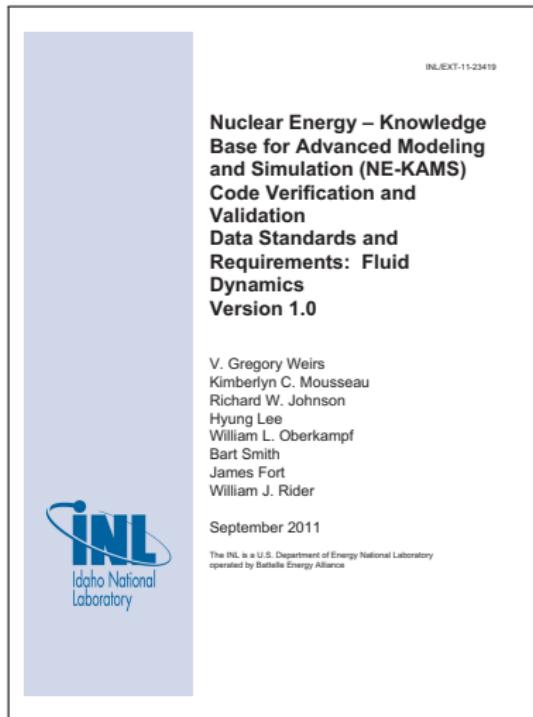
Validation Data Standards

The proposed classification system

- Capture the information about the experiment that computational analysts have access to through their interactions
- Document experiments better when synergy is not possible

"But that's what journal articles are for."

- Journal articles work well for discovery experiments.
- Journal articles **do not** capture the detail necessary for validation, **nor should they**.


Why Data Standards? Why a Classification System?

There are many motivations for the current work, but start with this one:

A request from a computational analyst performing a validation study to the experimentalist.

- I want my validation effort to be conclusive.
- I don't want to make any assumptions I don't have to.
- I am relying on your expertise.

"NE-KAMS Data Standards" – A Classification System

- Specifies what experimental information should be collected
- Focus on fluid dynamics
- Acknowledge that ideas will be refined (version 1.0)
- Also proposes standards for verification tests; not discussed today

Attributes and Completeness Levels

Attributes: Categories of information, aligned with aspects of establishing a computational model

- Experimental facility
- Analog instrumentation and signal processing
- Boundary and initial conditions
- Fluid and material properties of the walls
- Test conditions
- Measurement of experimental responses

Levels: From 0 to 3, increasing amount of information for each attribute

Experimental Facility

How does the facility work, how are flow conditions are controlled, and how was it operated for the particular experiment?

Level 0:

- Little or no description of the facility or its operation

Level 1:

- Some information on the functional operation of the facility and its operating procedures
- Some information on the geometric and equipment features of the facility

Experimental Facility (2)

Level 2:

- Detailed information on the functional operation of the facility and its operating procedures
- Detailed information of the geometric and equipment features of the facility
- Some information on the calibration procedures and reference standards for the facility
- Some information on the calibration results and characterization of the facility

Experimental Facility (3)

Level 3:

- Detailed information on the fine-scale flow features/environment inside the test section
- Some information on the fine-scale flow features or physical processes upstream of the test section
- Detailed information on the calibration procedures and reference standards for the facility
- Detailed information on the calibration results and characterization of the facility
- Information on the inspection, maintenance, and repairs of the facility

Analog Instrumentation and Signal Processing

What sensors and diagnostic equipment are used, how are they calibrated, where are they located, and how are the raw measurements processed to arrive at the results reported?

Level 3:

- Use of independent sensors and calibration procedures
- Use of independent/alternative signal processing procedures
- Detailed assessment of instrument performance and suitability

Boundary and Initial Conditions

What are the conditions at all the domain boundaries a computational analyst might consider? If a analyst might assume some conditions, what information is provided to justify these assumptions?

Level 2:

- Most inflow quantities measured
- Most wall quantities measured
- Most initial conditions measured
- Detailed as-built model dimensions measured
- Some outflow and reverse flow quantities measured

Level 3:

As level 2, but for fine-scale (turbulent) quantities

Fluid and Material Properties of the Walls

What are the properties and conditions of the fluid? What are the properties and conditions of the domain boundaries?

Level 3:

- All thermodynamic, transport, and optical properties of the fluid(s) are provided, as well as how these are determined
- Thermal, mechanical, and optical properties of the wall(s) are provided
- Detailed description of additional phases is provided, plus size distribution statistics

Test Conditions

What are the properties and conditions of the fluid? What are the properties and conditions of the domain boundaries?

Level 3:

- Detailed description of operational procedures for setting and controlling test conditions
- Detailed measurement of time and spatial variation of test conditions

Examples: temporal variation of the temperature of the fluid over a long running experiment, or ambient room conditions, or bubble concentration in a recirculating water tunnel

Measurement of Experimental Responses

For the quantities of interest, what information is given about the their variability and uncertainty? How extensive is the spatial coverage of the Qols? How extensive is the variety of the Qols?

Level 3:

- Use of independent data acquisition procedures
- Description of sensitivity of experimental responses to control of test conditions
- Video recording of measurement procedures and data acquisition provided
- All experimental responses reported with estimated bias and random uncertainties, including correlated uncertainties

Example 1: ERCOFTAC QNET-CFD Knowledge Base

ERCOFTAC: European Research Community on Flow, Turbulence, and Combustion

The QNET-CFD Knowledge Base has evolved over 20 years.

- A case in the “Gold” domain “has been carefully checked and therefore satisfies high quality standards” and also includes a quality review as contributed by one or more reviewers
- A case in the “Silver” domain “is less mature” and is “still under discussion and open for improvement”

Example 1: Case UFR 3-30, "2D Periodic Hill Flow"

Case structure

- Front Page
- Description
- Test Case Studies
- Evaluation
- Best Practice Advice
- References
- Quality Review (gold)

Essentially, a canonical format for a journal article

Example 1: Initial Assessment

Attribute	Level
Experimental facility	0
Analog Instrumentation and Signal Processing	1
Boundary and Initial Conditions	1
Fluid and Material Properties of the Walls	0
Test Conditions	1
Measurement of Experimental Responses	1

Experiment is high quality; reporting is as good as any other case in QNET-CFD

QNET-CFD case format was not designed for level of validation rigor needed today

Example 2: Argonne MAX

- Currently operational experiment; producing data for about one year
- Data provided directly by experimentalist
- Examples of results data were provided due to amount of data
- Data provided was not guided by NE-KAMS data standards or a detailed request

Logistics

- Running experiment; producing data for about one year
- Data provided directly by experimentalist
- Examples of results data were provided due to logistics
- Data provided was not guided by NE-KAMS data standards or a detailed request

Example 2: Initial Assessment

Attribute	Level
Experimental facility	2
Analog Instrumentation and Signal Processing	2
Boundary and Initial Conditions	0
Fluid and Material Properties of the Walls	1
Test Conditions	0
Measurement of Experimental Responses	2

More data is available, and this would improve completeness levels attained.

Need a system for collecting, maintaining, finding, and distributing artifacts of the experiment.

Lessons Learned: NE-KAMS Data Standards

- Consider adding information about the intent of the experiment, either as an attribute or separate item.
- Depending on the experiment, some attributes are less relevant.
- Completeness levels should not be views as a linear scale.
- It is difficult to identify **all** the critical information; this is why validation collaborations are more effective.
- Consider completeness levels for each diagnostic or each experimental response, if applicable.

Data Standards – Why Do It?

Is this a lot more work for experimentalists?

Yes:

- It's hard enough to collect the information I report now, this is a lot more.
- There are no tools to collect and distribute this information.

No:

- Good experimentalists are already chasing down a lot of issues to make the experiment successful. Document it and get credit for it.
- Better documentation and more transparency will distinguish better work.
- Your data will be used by more computational analysts if it is well documented.

Better documentation raises the bar on the simulation side as well.