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Background/objective

 Classic metal wire-grid polarizer

 Polymer’s 

 conjugated materials (polythiophene, polyaniline, polypyrrole)

 Nano-materials
 Carbon nanotubes, metal nano-particles, and graphene.

 Percolation thresholds range from as low as 1% doping using 
some of these techniques.

 Baseline: Develop an optical polarizer which is sensitive to 
vapor phase hydrogen fluoride (HF) by changing the 
conductive mechanism of the material backbone.

 Stretch Goal: Flexible substrate.
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Polymer composite based polarizer design 

 Criteria:  
 Conductivity ~ 100 S/cm

 Optically and electrically respond appreciably in the MWIR (3.39 m 
HeNe source).

 Modeling indicates a material thickness of ~ 2.0 – 2.5 m.

 Period of ~1.15 m (line/space) on mask dimension.
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Material investigation for HF sensing

• Develop a polymer nano-composite material with three requirements

– CONDUCTIVITY, level determined by optical device modeling

– SENSITIVITY, change of conductivity upon exposure to analyte

– SELECTIVITY, tailor response to specific analyte

• Analyte chosen – HF

• Two basic approaches

– Chemo-selective polymers doped for conductivity, e.g. silanes and 
boranes

– Nano-composites alter sensitivity (Group 1,2 elements, transition metals 
and semiconductors).
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Material investigation for HF sensing

 Down select of various polymer and blends through empirical 
efforts.
 Molecular weight

 Water stability (co-habitation)

 Dopants – nearly 60 wt.% for gold nano-particles, where as ~15-18 
wt.% for MWCNT’s for the same conductivity.

 Sensitivity to HF vapor

 Selectivity to HF vapor
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Material investigation for HF sensing
 Di-phenyl silane polymer 

 ~18 wt.% multi-walled carbon nanotubes ( 1nm x 0.5-5 micron in length).

 ~30 wt.% 100nm Titania ( TiO2) used an F- getter in the composite mix.

 XPS matrix of individual components versus total composite describe 
surface bond arrangements.  CFx, SiFx,  or TiFx - irreversible binding event.
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Energies required to make bond

CF: 544 kJ/mol
SiF: 552.7 +/- 2.1 kJ/mol
TiF: ~130-150 kJ/mol



Material investigation for HF sensing
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Engineering the flexible polarizer
 Why a template to support the material?

 Previous work included efforts in:

 MiMIC, stamping,  and aqueous lift off techniques, and dry etch.

9

Period 2.6 μm
Line width 800 nm
Height ~500 nm 
Fill Factor 0.31

Period 2.6 μm
Groove width 1.0 μm
Depth ~580 nm 
Fill Factor 0.38

Dried polymer PDMS Stamp 

Capillary force and density gradient of materials
would cause the solids to be filtered out.



Engineering the flexible polarizer

 A silicon template was developed to be filled using the 
material.  

 Utilized a running bond design.

 Each bond line is 5 m wide.

 Pattern is offset for support.

 Balanced stress for release etch.

 Etch depth ~ 5 m.

 Period of ~1.2 m (space)
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Engineering the flexible polarizer

 Large are coverage.
 1” X 1” size in the future.

 Uniformity

 Thickness

 Coating options:
 Brush coat

 Doctor blade

 Roll coat

 Surface preparation.
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Engineering the flexible polarizer

 Moved to an SOI wafer to leverage the oxide as a stopping 
layer.

 Performed a backside DRIE etch to the BOX.

 5 m device layer

 300nm SiO2 layer

 Lesson’s learned.
 Thin membrane handling.

 Static, vacuum, cleaning, etc.

 Finish front side DRIE last with SiO2 hard mask to maintain integrity.

 Dry etch using RIE to remove hard mask.

 Drop cast final material – do not roll coat.
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Engineering the flexible polarizer
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(a) (b)

(c ) (d)

(a) shows an SEM of a 1 cm X 1cm release tag
(b) is an image of a torn membrane 
(c) are the silicon fins remaining on the oxide membrane 
(d) is a coated device after processing.

Optical Pic. Of 
coated device



Optical Characterization

 3.39 m HeNe source in reflection mode.

 HgCdTe detector (LN2 cooled)

 Device remained in the window screen for handling.

14

3.39 µm laser

Dsamp

Dref

BS
P

HWP

Iris

Iris
DUT

Ls

Lr

J. Hunker – IR camera



Vapor phase HF exposure 
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Viton O-ring for sealing.  Small block teflon in bottom.



Results
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 Produced 2-full wafers to date using this technique.

 Being the structure may not be perfectly planar the beam is 
walking some in reflection mode.



Conclusion

 Demonstrated a proof of concept device.

 DRIE etch development to minimize micro-masking.

 Showed a possible transfer technique to Kapton tape 
surfaces.

 Future work includes:
 Moving to 1” X 1” area.

 Investigate transfer options for optimal performance.

 Optical performance as a function of HF response.

 Thanks for your time.
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