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Metamaterial overview

Negative index1,2

4 J. Valentine et al., Nature 455, 376 (2008)
5 S. Burgos et al., Nature Materials 9, 407 (2010)
6 J. Ginn et al., Phys. Rev. Lett. 108, 097402 (2012)

Magnetic mirrors3

3D SRRs1,2,3

1 N. Liu et al. Nature Materials 7, 31 (2008)
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Light-matter coupling

Weak coupling

- Losses > Coupling

- Purcell regime

Strong coupling

- Coupling > Losses

- Energy exchange

- Rabi frequency



Strong coupling
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Strong vs. ultra-strong coupling
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Ultra-strong coupling physics

Splitting ΩR similar to system resonance

Anti-resonant terms in equilibrium

Squeezed vacuum as ground state

Release correlated photon pairs

Light-matter superposition = Polaritons

Ω� � ����/2

Geometry factorPlasma frequency

C. Ciutu et al., Phys. Rev. B 72, 115303 (2005) S. DeLiberato et al., Phys. Rev. Lett. 98, 103602 (2007)
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FDTD resonator design
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Strong coupling theory vs. experiment

FDTD 

simulations

Anti-crossing

Polariton 

picture1,2

2 A. Gabbay et al., Opt. Exp. 20, 6584 (2012)1 A. Gabbay et al., Appl. Phys. Lett. 98, 203103 (2011)



Intersubband flexibility
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Experimental Rabi oscillations
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Ez near-field profiles
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Application vs. physics
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Conclusion & Outlook

Ultra-strong light-matter interaction

Rabi frequency similar to bare cavity resonance

Quantum-well controlled electrically

Turn coupling on/off


