
FlipSphere: A Software-based DRAM Error
Detection and Correction Library for HPC

David Fiala1, Kurt B. Ferreira2, Frank Mueller1, Christian Engelmann3, and
Ron Brightwell2

1 Department of Computer Science, North Carolina State University
{ dfiala | fmuelle }@ncsu.edu

2 Scalable System Software, Sandia National Laboratories Albuquerque, NM 87123
{ kbferre | rbbrigh }@sandia.gov

3 Oak Ridge National Laboratories engelmannc@ornl.gov

Abstract. Proposed exascale systems will present a number of consid-
erable resiliency challenges. In particular, DRAM soft-errors, or bit-flips,
are expected to greatly increase due to the increased memory density of
these systems. Current hardware-based fault-tolerance methods will be
unsuitable for addressing the expected soft error frequency rate. As a
result, additional software will be needed to address this challenge. In
this paper we introduce FlipSphere, a tunable, transparent silent data
corruption detection and correction library for HPC applications.

FlipSphere provides comprehensive SDC protection for program mem-
ory by implementing on-demand page integrity verification. Experimen-
tal benchmarks show that using on-demand page verification with Flip-
Sphere we can protect 80% to 50% of program memory with time over-
heads between 7% and 55%.

1 Introduction

With the increased density and power concerns in modern computing chips,
components are shrinking, heat is increasing, and hardware sensitivity to out-
side events is growing. These variables, combined with the extreme number of
components expected to make their way into computing centers as our compu-
tational demands expand, are posing a significant challenge to the design and
implementation of future extreme-scale systems. Of particular interest are soft
errors in memory (spontaneous bit flips in memory) that manifest themselves as
silent data corruption (SDC). SDC is of great importance to the reliability of
these systems due to its ability to render results invalid in scientific applications.

Silent data corruption can occur in many components of a computer sys-
tem including the processor, cache, and memory due to radiation, faulty hard-
ware, and/or lower hardware tolerances. While cosmic particles are one source
of concern, another growing issue resides within the circuits themselves, due to
miniaturization of components. As components shrink, heat becomes a design
concern which in turn leads to lower voltages in order to sustain the growing chip
density. Lower component voltages result in a lower safety threshold for the bits
that they contain, which increases the likelihood of an SDC occurring. Further,

SAND2012-1355C



2

as densities continue to grow, any event that upsets chips (i.e., radiation) is more
likely to be successful at flipping bits in memory.

Current systems use memory with hardware-based ECC that is capable of
correcting single bit error and detecting double bit errors [2] within a region of
memory (typically a cache line). Errors in current systems that result in three
or more bit flips will produce undefined results including silent data corruption,
which may produce invalid results without warning. While the frequency of single
and double bit errors is known (8% of DIMMs will incur correctable errors while
2%-4% will incur uncorrectable errors [11]), the frequency of higher bit errors is
still a open research question. Nonetheless, the overall occurrence of bit flips is
expected to increase as chip densities increase and feature sizes decrease.

While hardware vendors will address this issue of silent data corruption for
the consumer and enterprise markets by adding more sophisticated detection
and correction logic in hardware, this will come at a price of increased memory
overheads, memory latencies, and power. More importantly, it is not clear that
these vendor solutions will be sufficient given the unprecedented scale and failure
rates of future extreme-scale systems [3].

To address this SDC issue, we introduce FlipSphere, a software-based, generic
memory protection library that increases the resilience of applications by pro-
tecting data at the page level using an application transparent, tunable, and
on-demand verification system. FlipSphere provides the following contributions:
– It provides transparent protection against SDC for all applications without

the need for any program modifications.
– It operates agnostic to the data access patterns of an application.
– It is extensible. New features, such as custom hashing algorithms or software-

based ECC, which can not only detect but also correct SDCs that evade
hardware ECC can easily added.

2 Design
In this paper, we present FlipSphere, a application-transparent library that

detects and corrects soft-errors in a program. FlipSphere works alongside tradi-
tional hardware ECC as an additional layer of defense against SDCs that exceed
the limitations of hardware protection or it can independently provide protec-
tion on systems that lack hardware ECC altogether. FlipSphere tracks memory
accesses at the virtual memory page level and verifies that the contents of each
accessed page have not unexpectedly been altered by corruption.

FlipSphere monitors all read and write requests that an application incurs
during execution while simultaneously verifying these data accesses. This veri-
fication is done by comparing a current hash against a previously known good
value for that page. If an unexpected hash mismatch occurs during execution,
then FlipSphere will attempt to correct the flipped bits using the previously
calculated and stored ECC bits for that page. After the ECC correcting algo-
rithm completes, the page will be rehashed and verified again to ensure that the
correction algorithm was successful. If the rehashed page still does not match,
FlipSphere will terminate the process or roll back to a previous checkpoint. This



3

ensures that the application does not continue to compute and report invalid
results. Once a page’s integrity has been successfully verified, the application is
allowed to proceed with forward progress.

Once a memory page has been verified, it will be available for use without
further interception by FlipSphere. A page in this state is referred to as un-
locked. Likewise, all other pages that have not yet been verified by FlipSphere
will be considered locked. For each additional locked memory access, FlipSphere
will intercept the request and verify the locked memory before unlocking it and
allowing the application to progress.

Page accesses(unlocking) can be thought of as such:
On page request (initial read or write):

If page is locked:
Perform hash of page
Compare current hash with previously stored known good hash
If any inconsistency found (hash mismatch):

Attempt to correct the bit errors with software ECC
Rehash the bad page again and compare
If inconsistency still exists:

Notify the presence of SDC and report location
Terminate application / Rollback to previous checkpoint

Mark page as unlocked
Return control to application

As an application executes over time, it is inevitable that all needed pages
within an application’s address space will at some point become unlocked, which
means that no further page-level error checking will occur. Therefore it is nec-
essary for FlipSphere to occasionally put pages back in the locked state so that
they may be protected from corruption.

Page locking involves the following steps:

On page relock event:
For each unlocked page:

Calculate new hash of entire page
Generate ECC bits for data in page
Storage hash and ECC bits in separate location
Mark page as locked

Return control to application

Internally, FlipSphere maintains its own alternative protected heap space
for the application and interposes memory allocation functions such as malloc,
realloc, and memalign. These interposed functions will allocate memory from
FlipSphere’s protected heap and give the application addresses that later will
always be either locked or unlocked.

Alternatively, for applications that allocate the bulk of their memory in a
data or BSS section of the executable, FlipSphere protects those sections of
data as well. When an application begins execution, all memory in FlipSphere’s
protected heap or data/BSS sections are locked by default. When an application
allocates memory (i.e. calls malloc), the pages returned will become unlocked
on future read/write memory accesses until locked by the library at some later
time.

As stated previously, to restore page-level protection FlipSphere must occa-
sionally relock all of the protected pages. This process currently occurs based on
a timer that triggers all FlipSphere processes to temporarily interrupt program



4

execution and systematically inspect every page that was unlocked and return it
to its locked state. During this transition from unlocked to locked a new hash of
each page is calculated and optionally new software ECC bits are generated.

FlipSphere allows the user to tune the amount of time to wait be-
tween relocking all pages as the relock interval affects the execution time
of an application. Specifying a relatively small interval leads to overheads
due to more frequent hashing and ECC code generation. Additionally,
in the current Linux-based implementation, the mprotect system call on

Unprotected code BSS and/or dataUnprotected code, BSS, and/or data

Protected data (alternate FlipSphere heap or BSS/data)

LIBSDC internal data, hashes, ECC

Locked/Protected Page – Must validate before next use

Unlocked/Unprotected Page – Recently validated
(may be read/written)

Internal storage (i.e., hashes of pages protected)

Fig. 1. Memory Layout with FlipSphere

multicore chips will result in the flushing
of the translation lookaside buffer (TLB)
for all cores, which can significantly re-
duces performance due to TLB misses as
the application progresses. On the other
hand, setting the relock interval to a rela-
tively large value will reduce the effective
protection that FlipSphere can provide.

Figure 1 shows a snapshot of an appli-
cation’s address space with this library.
From the figure, we see some pages are
unprotected and others reside in the pro-
tected heap as either locked or unlocked.
The figure currently shows several un-
locked pages, but as time goes on the set
of unlocked pages will be reset at the next
relock cycle. Note that as depicted, the
FlipSphere internal data is always stored
elsewhere in memory separate from the
protected heap.
2.1 Extensions for Hashing and Error Correction

In the previous section of this paper we referred to FlipSphere’s ability to
store a hash of pages that are under its protection. This comparison of hash
values is not capable for correcting errors. To provide correction capabilities,
FlipSphere can additionally compute and store error correcting codes (ECC)
such as hamming codes. For example, the 72/64 hamming code, frequently used
in hardware, may be employed inside of FlipSphere to provide single error cor-
rection, double error detection (SECDED) capabilities at the expense of the
additional storage required for the ECC codes. Table 1 provides a breakdown
of the storage overheads associated with some common hashing algorithms and
our ECC implementation.

With FlipSphere extended with hashing plus ECC codes it is possible to
enjoy the protection and speed of hashing while limiting ECC code recalculation
only to times when a page has become corrupt during execution resulting in a
mismatched hash.
2.2 Assumptions and Limitations

FlipSphere’s protection extends only to memory and is not designed to pro-
tect against faults that occur in the CPU or other attached devices. Since Flip-



5

Sphere uses page permission to track memory accesses it requires the use of a
Memory Management Unit (MMU).

Table 1. Comparison of Storage Overheads

Algorithm Overhead per Storage
4KB page Overhead %

CRC32 Hash 4 bytes 0.10%
MD5 Hash 16 bytes 0.39%
SHA1 Hash 20 bytes 0.49%
SHA256 Hash 32 bytes 0.78%
72/64 ECC 512 bytes 12.5%

Any application that depends
on DMA with devices such as net-
work adapters must be handled
specially since DMA may change
memory without going through
the MMU or notifying the OS of
page accesses. FlipSphere ensures
that MPI safely works with locked
pages being used as pointers in
MPI operations by tracking all outstanding MPI requests and any associated
pointers.
3 Implementation

To ensure protection of memory, FlipSphere must be able to receive a noti-
fication when a page is accessed. To achieve this tracking, FlipSphere uses the
mprotect system call to remove read and write access bits of protected pages.
Removing these permissions ensures that a segmentation fault (SIGSEGV) viola-
tion is raised when the page is accessed. The library installs a signal handler for
this SIGSEGV violation for notification.

Upon notification, FlipSphere uses an internal table to verify that the ad-
dressed page is under its protection. Then, as stated previously, verification is
performed by comparing hash values. After verification, the page’s read and
write bits are restored, again using the mprotect call and control is returned to
the application.

FlipSphere’s internal table stores the following information for each protected
page.
– A status flag to indicate locked, unlocked, or permanently unlocked pages;
– Storage for the page’s last known good hash;
– (Optional) Storage for the page’s software ECC bits.

3.1 Hashing and ECC Implementations
FlipSphere currently supports the CRC32 hashing algorithm and the 72/64

hamming code (ECC) for both CPUs and streaming accelerators such as a GPU.
Additional hashing and/or ECC algorithms can be easily added to FlipSphere,
for example, utilizing external libraries such as libgcrypt.

Our 72/64 hamming code implementation is capable of single-error-correct-
double-error-detect on each group of 64 bits in protected memory. We also im-
plement verification/correction for the ECC codes to fix errors on-demand if a
hash mismatch occurs.
3.2 Handling User Pointers with System Calls

The use of the SIGSEGV handler allows FlipSphere to track an application’s
memory accesses at the page level during execution. Unfortunately, if an appli-
cation or one of its libraries makes a system call with a pointer to userspace
memory, the kernel will not invoke the userspace SIGSEGV handler when it is un-
able to dereference a pointer. For this reason, we must wrap all system calls and



6

preemptively unlock any pointers to protected userspace memory that the kernel
receives as parameters. To achieve this, FlipSphere includes a counterpart kernel
module that wraps system calls and directs the userspace FlipSphere library to
unlock all pointers passed to the kernel prior to starting the actual system call’s
logic.

3.3 FlipSphere’s Protected Memory: Protected Heap

GLIBC M All t Fli S h M All tGLIBC�Mem.�Allocator FlipSphere Mem.�Allocator

P d P dU d Protected ProtectedUnprotected Protected
A li i

Protected
Lib i

Unprotected
Lib i Application LibrariesLibraries Application LibrariesLibraries

ll syscallssyscalls syscalls
ll ti

y
memory allocationsyscalls memory�allocationmemory�allocationsyscalls

MPI ll MPI callsMPI�callsMPI�calls MPI�callsca s

FlipSphereFlipSphere
syscall hookingsyscall hooking
SEGV�access�violations

lKernelKernel

Fig. 2. FlipSphere Component Interactions

There are two potential types
of memory that FlipSphere pro-
tects: BSS or the heap. Since the
BSS is the statically allocated
portion of an application it is
simple to protect. On the other
hand, dynamic memory alloca-
tion requires special attention.
By interposing the malloc fam-
ily of functions, FlipSphere can
be tuned to specify which addi-
tional libraries will receive pointers to protected memory in an alternate, pro-
tected heap. For instance, using a stack backtrace whenever malloc is called,
FlipSphere chooses whether to allocate space in the protected heap, or whether
to give back a normal, unprotected allocation via LIBC. This is useful to exclude
libraries such as MPI from internally allocating data that may later be used in
DMA operations. Figure 2 demonstrates the separation of heaps for libraries
that receive protected memory or unprotected libraries.

3.4 Optimization: Synchronized mprotect/TLB Flushing

In order for FlipSphere to track access to memory, it depends on the memory
management unit (MMU) to trigger access violations whenever pages in the
locked state are read or written. During the transition from locked to unlocked,
which occurs after FlipSphere verifies an accessed page’s hash, the PROT_READ
and PROT_WRITE page permissions are added to the target page. In the x86 64
architecture, in which we evaluated FlipSphere, the process of adding additional
access rights to a page does not involve flushing the TLB which makes the cost
of transitioning from PROT_NONE to read and write permissions relatively cheap.
Unfortunately the reverse process in which we return all pages’ access rights to
PROT_NONE during a relocking cycle is much more expensive and in fact causes
a TLB flush for each call to mprotect.

To minimize the disruption caused by frequent TLB flushes, FlipSphere syn-
chronizes all processes on a node when the relocking timer is triggered. Instead
of independently tracking the next relocking trigger per process, one master
process simultaneously notifies all protected processes to temporarily suspend
execution while pages are re-locked and PROT_NONE is applied to their page per-
missions. Synchronizing across all processes not only avoids costly TLB flushes
during computation but also ensures that memory access performance remains
as consistent as possible.



7

3.5 Optimization: Background Relocking
As previously described, FlipSphere synchronously triggers all processes on

the same node to relock their unprotected pages all at once. Unfortunately, this
leaves applications with a brief window of time in which all progress is stopped,
including communication. To allow applications to make forward progress in
both computation and any outstanding communication, FlipSphere provides an
optimized version of its relocking algorithm that operates in parallel to the ap-
plication. By temporarily serializing the process of mprotecting protected pages,
FlipSphere can delegate the task of rehashing pages that just got locked to a
background thread or streaming accelerator. Since this thread operates in the
background while the application continues with forward progress, both the ap-
plication and the background relocker will compete to be the first to either access
or lock/rehash pages. Pages accessed first by the application will not be hashed
and are considered “skipped”. Simultaneous accesses result in a “collision” and
are still hashed before being accessed.
3.6 Optimization: Accelerators

Due to the nature of ECC generation, hashing algorithms, and the struc-
ture of FlipSphere’s internal storage, there is ample opportunity for parallelism
and the use of streaming accelerators. We include in FlipSphere an implementa-
tion for both CPU hashing/ECC generation as well as support for accelerators
such as AMD Fusion accelerated processing units (APUs) or NVIDIA’s GPUs.
Additionally, FlipSphere exploits hardware features such as the SSE4.2 CRC32
instruction which provides accelerated CRC32 generation at demonstrated rates
of over 21 gigabytes per second per CPU thread. [1]
4 Experimental Framework

To gauge FlipSphere’s effectiveness we performed experiments that demon-
strate both its range of coverage in memory and cost in terms of application
runtime overhead. These experiments were carried out on compute nodes of an
HPC cluster with each consisting of 2-way SMPs with AMD Opteron 6128 and
32GB memory. As we are predominantly interested in the effects of application
performance on a per-node basis, we chose to run experiments that saturated a
single node at a time. Scaling across multiple nodes that are equally saturated
should incur the same performance characteristics with FlipSphere as single-node
performance.

As our experimental cluster is only equipped with NVIDIA GPUs, we simu-
late the expected time it would take for a shared-die APU accelerators to execute
page hashing and ECC generation. To obtain a realistic expected cost for hash-
ing and ECC generation, we ran our own custom implementations of NVIDIA
CUDA kernels for hashing (CRC32) and ECC (72/64 hamming codes), but only
count the time spent in the computation kernel while excluding DMA overhead.
Since we expect that shared-die APUs will incur the same DRAM access laten-
cies that NVIDIA GPUs do when they access their own global memory. Similarly,
as our CPUs lack the new SSE4.2 instruction set, we simulate the CPU time
needed for CRC32 generation using performance metrics provided by Intel [1]
on the CRC32 instruction.



8

1 sec 2 secs 3 secs 4 secs 5 secs 6 secs 7 secs 8 secs 9 secs 10 secs
A R ti O h d 96 69% 64 19% 53 08% 44 44% 36 69% 34 66% 29 76% 24 10% 21 70% 19 01%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Average Runtime Overhead 96.69% 64.19% 53.08% 44.44% 36.69% 34.66% 29.76% 24.10% 21.70% 19.01%
Average Percent Memory Unlocked 22.87% 36.97% 46.09% 52.61% 59.24% 66.71% 68.13% 66.11% 73.70% 77.13%

Number of Seconds Between Relock Cycles

(a) NAS Parallel Benchmarks - FT

1 sec 2 secs 3 secs 4 secs 5 secs 6 secs 7 secs 8 secs 9 secs 10 secs
A R ti O h d 55 81% 26 31% 21 63% 18 73% 14 51% 22 02% 14 94% 17 44% 7 01% 16 12%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Average Runtime Overhead 55.81% 26.31% 21.63% 18.73% 14.51% 22.02% 14.94% 17.44% 7.01% 16.12%
Average Percent Memory Unlocked 18.02% 22.97% 25.44% 31.45% 35.87% 41.52% 43.99% 51.94% 51.77% 52.12%

Number of Seconds Between Relock Cycles

(b) NAS Parallel Benchmarks - LU

Fig. 3. Reported runtime overheads of FlipSphere with average percent of memory
unlocked at any given time over varied relock intervals

As FlipSphere protects applications from silent data corruption by employ-
ing a generalized technique of hashing pages to provide on-demand integrity
verification, we chose to evaluate our library on two different applications from
the NAS Parallel Benchmarks (NPB) suite, each with varying memory access
patterns. Our first experiment is NPB’s FT (a discreet 3D fast Fourier Trans-
form) benchmark with class C input size. The second experiment is NPB’s LU
(Lower-Upper Gauss-Seidel solver) with a customized problem size of 300 and
12 iterations maximum. Both experiments were performed with 8 MPI processes
run concurrently on the same node. For our baseline experiments that lack Flip-
Sphere protection, FT class C completes 20 time steps in 108 seconds on average
while our custom input to LU completes 12 time steps in 180 seconds. This im-
portant difference in iteration time will later allow us to see how the speed at
which memory is accessed (i.e., number of seconds needed per iteration) will
affect the protection and efficiency of FlipSphere in our results.

We are predominantly interested in the effects of application performance
on a per-node basis, i.e., we chose to run experiments that saturated a single
node at a time. Scaling across multiple nodes that are equally saturated does
not add additional insight since it incurs the same performance characteristics
with FlipSphere as single-node performance.
5 Results

FlipSphere’s CUDA implementations of CRC32 hashing and 72/64 ECC code
generation were evaluated on a NVIDIA GTX 480. Timing only the kernel exe-
cution time, we observed that once properly tuned we could achieve a maximum
hashing rate of 44 milliseconds/GB and 36 milliseconds/GB for ECC generation.



9

Combined, our simulated cost using an APU for hash and ECC generation that
occurs at each relocking interval within experiments was 80 milliseconds/GB.

First, we analyze the results of the NPB FT benchmark. At this problem
size, FT allocated a total of 844MB of memory for computation. Figure 3(a)
indicates that we can provide a wide range of coverage with only 23% of memory
left unlocked and thus unprotected on average for a one second FlipSphere relock
interval. However, this high degree of coverage also cost nearly 100% in terms of
time overhead due to the high frequency at which pages must be rehashed and
returned to a locked state. Across the spectrum of relock intervals for FT, we see
that, by the time we relock pages with an interval of 4 seconds, our memory left
unprotected grows to over 50%. Finally, with a 10 second relock interval memory
coverage has dropped to merely 23%, yet with time overhead of just 19%.

What can be observed here is that with such a high rate of accessing a breadth
of the application’s pages, FlipSphere’s performance quickly suffers. Although it
is still possible to protect an application, its memory tend to be touched quickly,
and additional computational overhead will be incurred to verify all of these
accesses.

Next, we investigate the costs of the NPB LU benchmark which has been
modified to use a custom input. Unlike our previous experiment with FT, we
have change the input size of LU to use 566MB of memory per process and to
complete relatively fewer time steps in a longer interval. By increasing the time
required to complete a each pass of a time step, the memory access pattern of
LU is effectively being slowed down, which generates a smaller working set of
memory relative to its entire resident set.

Figure 3(b) shows that LU with FlipSphere is capable of protecting the ma-
jority of memory even with relocking intervals that approach 10 seconds. Addi-
tionally, since LU is operating with a working set size that FlipSphere is able to
hash in relatively little time. Overheads of 56% to as low as 7% are considerably
cheaper and palatable than those seen with applications experiencing high rates
of touching all memory.

These results indicate that for applications that maintain a large resident
set of memory but temporarily use a smaller working set for computation, Flip-
Sphere can provide effective SDC coverage to the majority of the non-working
memory set.
6 Related Work

FlipSphere is a redesign of LIBSDC [5]. LIBSDC provided software-based
page-level protection by tracking page accesses using the MMU and removing
page permissions of a less recently used page every time a new page was accessed.
LIBSDC reported application slowdowns of over 20x due to a combination of its
page locking mechanisms, dependence on the application tracing API ptrace,
and hashing methods used. FlipSphere differentiates itself from LIBSDC by pro-
viding a full software-based ECC implementation, protection of both application
heap and BSS, timer-based relocking instead of LRU, non-blocking performant
background relocking, hugepages support, and a lightweight kernel module to
remove dependence on ptrace.



10

One method to address silent data corruption is from the field of algorithmic
fault tolerance where researchers have proposed methods to protect matrices
from SDCs that corrupt elements within a dense matrix [6]. While these meth-
ods are effective for many matrix operations, such as multiplication, it is not
clear that this form of fault tolerance can protect all types of possible matrix
operations even if we disregard the fact that matrices are only one of numerous
important structures. Additionally, although promising in many regards, fault
tolerant algorithms are incredibly difficult and sometimes impossible to design
for many arbitrary data structures or operations on that data. Worse, this type
of protection does not provide comprehensive coverage of the entire application,
which leaves anything outside of the algorithm, such as other data and instruc-
tions, entirely vulnerable to SDCs.

Similar to FlipSphere, another approach uses software-implemented error de-
tection and correction using background scrubbing combined with software ECC
to periodically validate all memory and correct errors if possible [12]. While this
approach and FlipSphere are both entirely transparent to the application, Flip-
Sphere differentiates itself by providing on-demand page-level checking based on
the application’s data access patterns. In a HPC environment, software-based
background scrubbing would likely consume too much of the already limited
memory bandwidth and generate substantial application jitter [4] during execu-
tion.

While the techniques described thus far in this section do not require changes
to the application or executable, the techniques described in the remainder of the
section require either modifications of the executable through source-to-source
transformations or modifications to the executable with duplicate instructions
or control flow verification.

Source-to-source transformation techniques [9] have been investigated that
generate a redundant copy of all variables and code at the source level. Through-
out the transformed source code are additional conditional checks that verify
agreement in the redundant variables after each set of redundant calculations
are performed. If at any point throughout the execution redundant variables do
not agree then the application aborts. Unfortunately, however, this technique
is unable to handle pointers, only supports basic data-types and arrays, and
doubles the required memory. SDCs that occur in the instruction memory may
not be detected, thus causing unpredictable results. Due to a high number of
conditional jumps used for consistency checking, the efficiency of pipelining and
speculative execution suffers. FlipSphere differentiates itself from this work by
not requiring source modifications, lowering the memory requirement overheads
substantially, supporting any type of code (pointers, data-types, etc are irrele-
vant to FlipSphere), and can be instructed to protect any region of memory at
run-time.

Duplication instructions is another proposed technique to increase SDC re-
silience in software. Error detection by duplicated instructions (EDDI) [7] du-
plicates instructions and memory in the compiled form of an application in a
manner similar to the source-to-source transformations, but achieves more sup-



11

port for programming constructs at the cost of platform dependence. Unlike the
source-to-source transformations, EDDI compiles applications to binary form,
redundantly executes all calculations, ensures separation between calculations
by using differing memory addresses and differing registers, and attempts to or-
der instructions to exploit super-scalar processor capabilities. During execution,
the results of calculations are compared between their redundant variable copies,
but as a result, available memory is halved and register pressure is doubled. Flip-
Sphere differentiates itself from this work by being platform-independent, not
requiring redundant execution or program modifications, and protecting instruc-
tion memory without the need for complex control-flow checks.

Extensions to EDDI have been proposed [10] that achieve better efficiency by
assuming reliable caches and memory, but still require redundant registers and
instructions. Their experiments showed an average normalized execution time of
1.41, but without protection for system memory. The similarity to EDDI may
indicate that even without protecting memory there is a substantial overhead
due to register pressure, additional instructions, and highly frequent conditionals
that come with duplicating instructions and registers. This work also showed that
compiled executables with the added fault tolerance were 2.40x larger than the
original unaltered executables.

Control-flow checking is another area of research that attempts to detect the
effects of SDCs in applications [8]. Unfortunately control-flow integrity verifi-
cation does not necessarily protect against SDCs that only alter data without
affecting the execution path of an application.
7 Conclusion

In this paper we have presented an implemention of our silent data corruption
detection and correction library, FlipSphere. FlipSphere operates by protecting
pages of memory with known good hashes of each page coupled with software
based ECC codes. Memory is verified in an on-demand fashion and FlipSphere
confirms the integrity of each page upon access while fixing any potential errors
using the precomputed ECC codes. FlipSphere is transparent to the applications
that it protects and is capable of being tuned to allow an operator the choice
of which application memory to protect, the desired degree of memory coverage
vs time overhead, and the choice of alternative hashing or ECC algorithms. Our
implementation of FlipSphere is capable of exploiting both accelerated process-
ing units (APUs), GPUs, and hardware features such as SSE4.2 to provide low
overhead options for hashing and ECC generation.

Our results show that FlipSphere is capable of providing low overhead pro-
tection to the vast majority of memory for applications that exhibit temporal
locality within their working-set of memory. This work shows great potential
for SDC protection: experimental results demonstrate time overheads of only
7% while still protecting 50% of memory for the NPB’s LU benchmark. Tuned
differently, for LU we can also see protection of up to 82% of memory with a
time overheads of 55%.

With its wide variety of tunable options, FlipSphere constitutes a low-
overhead feasible option for software-based SDC protection.



12

References

1. Fast crc computation for iscsi polynomial using crc32 instruction. White Paper
(April 2011), download.intel.com/design/intarch/papers/323405.pdf

2. Chen, C.L., Hsiao, M.Y.: Error-correcting codes for semiconductor memory ap-
plications: A state-of-the-art review. IBM Journal of Research and Development
28(2), 124 –134 (march 1984)

3. Ferreira, K., Riesen, R., Bridges, P., Arnold, D., Stearley, J., III, J.H.L., Oldfield,
R., Pedretti, K., Brightwell, R.: Evaluating the viability of process replication
reliability for exascale systems. In: ACM/IEEE Conference on Supercomputing
(SC’11) (Nov 2011)

4. Ferreira, K.B., Bridges, P.G., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: ACM/IEEE Conference
on Supercomputing (SC’08). p. 19 (Nov 2008)

5. Fiala, D., Ferreira, K., Mueller, F., Engelmann, C.: A tunable, software-based
DRAM error detection and correction library for HPC. In: Lecture Notes in Com-
puter Science: Proceedings of the European Conference on Parallel and Distributed
Computing (Euro-Par) 2011: Workshop on Resiliency in High Performance Com-
puting (Resilience) in Clusters, Clouds, and Grids. Springer Verlag, Berlin, Ger-
many, Bordeaux, France (Aug 29 - Sep 2, 2011)

6. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
Computers, IEEE Transactions on C-33(6), 518 –528 (june 1984)

7. Oh, N., Shirvani, P., McCluskey, E.J.: Error detection by duplicated instructions
in super-scalar processors. Reliability, IEEE Transactions on 51(1), 63 –75 (mar
2002)

8. Oh, N., Shirvani, P., McCluskey, E.: Control-flow checking by software signatures.
Reliability, IEEE Transactions on 51(1), 111 –122 (mar 2002)

9. Rebaudengo, M., Reorda, M., Violante, M., Torchiano, M.: A source-to-source
compiler for generating dependable software. In: Source Code Analysis and Ma-
nipulation, 2001. Proceedings. First IEEE International Workshop on. pp. 33 –42
(2001)

10. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: Swift: Software
implemented fault tolerance. In: Proceedings of the international symposium on
Code generation and optimization. pp. 243–254. CGO ’05, IEEE Computer Society,
Washington, DC, USA (2005), http://dx.doi.org/10.1109/CGO.2005.34

11. Schroeder, B., Pinheiro, E., Weber, W.D.: Dram errors in the wild: a large-
scale field study. In: Proceedings of the eleventh international joint conference
on Measurement and modeling of computer systems. pp. 193–204. SIGMETRICS
’09, ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1555349.
1555372

12. Shirvani, P., Saxena, N., McCluskey, E.: Software-implemented edac protection
against seus. Reliability, IEEE Transactions on 49(3), 273 –284 (sep 2000)


