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Adiabatic Quantum Algorithm for PageRank Applications of Graph Theory
Recently, Garnerone et al. proposed an adiabatic quantum algorithm for search engine ranking based on the PageRank e QPR algorithm provides sampling of smallest eigenvector
graph analysis algorithm utilized by Google [1]. Here we discuss the algorithm as a starting point for our work. e Sampling probability proportional to magnitude of entry
QPR e Potential sublinear time algorithm for top entries
PageRank Algorithm Graph-derived Algorithm e Apply to Graph-derived matrices (spectral algorithms)
ri e Examples: Adjacency, Laplacian, Normalized Laplacian
* The PageRank Algorithm [2] finds the stationary distribution of a matrix e Instances need large spectral gap
random walk on a graph T T e Dense instances imply non-local Hamiltonians
e The stationary state is an eigenvector of the Google matrix, G ) 'O_
e The Google matrix is a matrix formed with the addition of a s L
stochastic personalization vector T e T Spectral Graph partitioning
Sampling of smallest eigenvector N 0 <
. » - » - Community DetECtion ::: 472 Z :
weigh (i,j)-th add personalization ° = o |
| t b 1 d i \\‘\/ '\\‘g i 600 80 O O
element by 1/d(i) vector €§\>\?’é\\$\y ") }o -
. . . lii/;?" ‘/‘.‘@m\ ) 800 “re e e
Adiabatic Quantum Algorithm for PageRank S -k
7 ‘ ‘ ‘ Py C(° ° ° ¢ ‘ .
* [n mapping to a quantum version, we are looking for the ground state of the Hamiltonian: Y &8 * Image to ba segmented” " Associate nodes with coarsened pixels”
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Communities identified *
e This problem illustrates several features: s .12!.1!'
> Needs only log(N) qubits for an N vertex graph
o Requires full control of Hamiltonian. i.e. encoding an arbitrary graph requires arbitrary References
matrix elements of the Hamiltonian. [1] Garnerone, et al. Phys. Rev. Lett. 108, Near-bipartite structure:
e Can be easily extended to a single qubit per node, realizing an XY model: 230506 (2012) Fraud perpetrators
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2 i 2 i< j (1998) e Use eigenvectors to partition graph
e Each entry is associated with a node
e E.g. sign of entry determine partitions
. e Communities typically identified by (weighted) edge structure e Second-smallest eigenvector effective for partitioning
Experlmenta/ Status * Internally dense with sparse extrenal connections e Sampling gives "important" nodes in partitions
- * Issue: elusive communities may be internally sparse? e Employ recursive hierarchical partitioning for > 2 partitions
Experimental Control - . .
p * Some communities elude direct detection e Application: image segmentation [3] (figure derived from [4])
e Python control software for voltage control and instrumentation e Collusion or fraud may prevent detection of edges
e Can control 96 independent voltages on the fly e How to find such communities? References
e Provides feedback onto applied voltages and instruments based upon photon counts e Use "targets" to identify elusive communities [1] Chau et al. Proc. ECML-PKDD conf., (2006)
e FPGA based pulsing system with photon counting, time-to-digital converter, and 6 direct e (Near-)Bipartite core: two densely connected very sparse sets (2] Kumar at al. Proc. 8th International WWW conf., (1999)
digital synthesizers * One set elusive community, other its "targets” [3] Shi and Malik. IEEE Trans. on Pattern Anal. and Mach.
500 S ! ? ? ? ! ? e Spectral approaches are promising Intel., 22, 8 (2000)
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e Have trapped both ytterbium 174 and 171 3 400 3 600 http://cs.yale.edu/homes/spielman/sgta/SpectTut.pdf
e Applied RF: ~200V at 20MHz 2 o 2 0
e Trap characterization with ytterbium 174 3 300} & nfieibiadtias 5
e Secular frequencies: © g sh Bl e O 200 . .
0.500 MHz (axial), 1.98 MHz (radial) T O : | | _ Fabrlcatlon TEChnO/Ogy
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785 190 192 1.94 1.96 1.98 2.00 50" -100 _5.0 0 50 100 Utilizing the ion trap fabrication technology available at Sandia, we are currently using a workhorse linear trap to
Micromotion Compensation Frequency (MHz) Detuning (MHz) develop our ytterbium qubit capabilities, as well as developing advanced ion trap structures such as rings and junctions.
. ,.Automa’.ced control sequence compen.sateij? * In our experiments, we have two beams, on normal to trap axis (blue Thunderbird Linear Trap Fabrication Techniques
micromotion based on both photon arrival time [1], bel d t 45 d d , , , , o
. s arrow be OW)' and one a egrees (re ) e Microfabricated linear trap using 2-level metallization ° |ntegrated trench capacitors for RF p|ckup fi|tering
and parametric excitation [2] o Minimizati f ohot lati ith bl Its in sienificant , , ,
Inimization or photon correfations wi ue results In significan e Has been used in labs around the world to trap calcium, ytterbium, e Four level metallization for routing/grounding
St correlations with the red beam. and magnesium e Small through holes for loading
e This implies a large amount of axial micromotion. To compensate in all e 48 control electrodes e Custom die shapes for a tight beam focus
+ directions, we will need to use multiple beams in our minimization routine. | o
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y s Heating Rates
Measure e Measuring heating rates via doppler recooling [2]. High Optical Access Trap
EIEMEIE Ry e Measurements performed with calcium in another chamber with identical trap. e Surface skimming beams with waists as small as 4gm g
excitation e Heating rate: ~42 quanta/ms with NI Chassis, 27quanta/ms with batteries e Slot to accommodate tightly focused beams vertical to surface
+ K10 e Loading regions and junctions to control ordering of a multi-species ion chain
| | ' g OSSR e Designed to have a 4x improvement to the trap depth (from 50meV to 200meV) over earlier traps.
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Implementing Graph Analysis with Trapped lons . o . . .
p o g p | y | PP | . Adiabatic Realization of XX interactions [3] Extension to the XY model
Y.tter.blum ions are good candldat?s for guantum bits due to long stora.g.e and coherence times [1], and high » Adiabatic quantum simulation of the transverse lsing model with trapped ions e Applying two sets of Mglimer-Sgrensen gates with a 1t/2 phase
fidelity gates can be performed with high power pulsed lasers [2]. Additionally, they currently are used for e Carrier Raman --> Transverse B field (y direction) shift results in cross talk between modes.
guantum simulation of the transverse Ising model [3]. By leveraging this technology we hope to realize the e Mglimer-Sgrensen —> XX coupling (tuning phase) e Possible solution: address different motional modes,
spin-spin couplings needed for graph algorithms (such as the XY model). » Spin Spin interaction tuned by power and detuning > Multiple beams with different orientations to provide
. 171t . o e Residual spin-motion terms can be elimiated by large detunings orthogonal kicks
Relevant Atomic Structure of ~"~Yb Implementing the circuit model o Rotating the principal axes to change direction of kick
* Single Qubit rotations: H = E Byag(f) 4+ E J; j(fg)ffa(;ﬂ > Splitting the horizontal and vertical in frequency space to
o Global Rotations: microwaves at 12.6GHz p i< R o help eliminate cross talk
P3/, > Individual rotations: Raman beams at carrier In general: spin-spin interaction is ¢',0’, Vertical
e Multi Qubit gates: Mgllmer-Sgrensen gate with Rabi Frequencies Phase angle ¢ is tuned by relative phase modes _
------------------------------------ 100THz Raman beams \ between RF sources in modulators Sk- ha.s ccln(rjr.lpon.ents '””bOt.h
e |nitialization and detection: 369nm light on S,,,-> P . ey . principal directions, allowing us to
P/ y transition 8 Y2 Jij=— Z 1i,m S 2i%05,m 8 Y Vim Momentum kick address both sets of modes with
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S | Trap surface Detunings from horizontal
S . : Experimental Issues i
S Different comb teeth bridge f . * 1 p and vertical modes
: : : Transverse
High power 355nm laser Ti: Sapphire modes )/\
$ ‘ e Far detuned from any transition * Lower power, tune closer to P/, 5 5
S e Extremely low spontaneous e Possibly non-negligible spontaneous H v
12 fquoie = 12.6GHz emission rate emission o \
]\ A e Differential Stark shifts small e May produce differential Stark shifts %
SN D\ A L e High power may damage tra e Lower power will not damage tra axial H \Y
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* |S;/, F=0 m=0>= |0> 0 Detuning from the carrier (W)
*|Sy, F=1 m=0>=|1> * Pulsed laser with large bandwidth can provide frequencies needed e What are the full set of experimental control knobs available? References
e Can have long coherence times (>1s) due to for gates/spin-spin interactions e Given the set of controllable paramters, what is the set of realizable graphs? . _
1st order insensitivity to magnetic field e Tuning the relative phase of the two envelopes determines the type e Can we realize algorithms with just an XX coupling? Or adiabatically tuning the [11'S. Olmschenk, et al. .f’hys:ca{ Review A, 76, 052314 (2007)
fluctuations of interaction (carrier-envelope phase stabilization not necessary) phase in the ¢ interaction between XX and YY? [2] D. Hayes, et al. Physical Review Letters, 104, 140501 (2010)
[3] K. Kim, et al. New Journal of Physics, 13, 105003 (2011)
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