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IMPACT project:
ighly stable, miniature frequency standard

Symmetricom 5071A

Integrated Micro Primary Atomic
Clock Technology (IMPACT)

Achieve Cs Beam Clock
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> IMPACT phases

* phase | : proof of principle
- proved components, particularly small ion trap
- make portable clock
* phase Il : miniaturization / improve
performance
- shrink components / start to integrate
- deliver working clock

» phase lll : further miniaturization / best
performance

Sandia
@ National JPL
Laboratories e




phase |

phase Il

phase Il

(@)

Sandia
National
Laboratories

erformance of JPL Phase-| Package
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JPL-designed phase |l metal package
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For demonstration of a complete
_ portable clock
% Smaller sealed Titanium package - all
_‘C;_ nonmagnetic materials

Incorporates shield and field coils to
control magnetic field fluctuations
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Temperature Co-Fired Ceramic lon Trap

Total Tranverse Potential

0003 [

« Co-fired Ceramic Linear RF Paul Trap o002
« Ceramic PCB, 14 layer structure

* lon Trap Depth =1.2eV @ 100 Vg, 1.7
MHz
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}" Miniaturization and stability

Clock is getting smaller - what about the stability?

main limiting factor in stability in phase | clock: magnetic fields

Bias field fluctuations limits frequency stability due to 2nd
order Zeeman shift

« minimize stray fields with coils and shield; then we are less
sensitive to fluctuations

Field gradients cause broadening of the clock resonance
through ion motion

* minimize gradients due to magnetic materials

« understand broadening and engineer trap to avoid the
effect from any unavoidable gradients
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Long-Term Stability:
Magnetic Field Fluctuations

Effect of magnetic field
fluctuations on long-term
stability
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erm Stability: How does ion
motion affect clock operation?

Best achieved stability: 10-'3
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_all ‘ lon Motion simulation

» Buffer-gas cooled, large ion cloud

* Model the motion: numerically calculated
trap potential, space charge density,
realistic trap parameters (shape and drive)

« Calculate the spectrum of frequencies of
ion motion: same as the spectrum of RF
frequencies seen by the ion
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«ecular frequency measurement
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ﬂadient tolerance in presence of
magnetic materials

Dephasing vs B field —=—Igrad=0
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P ”adlent tolerance in presence of

Dephasing vs B field =—Igrad=0
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magnetic materials

Dephasing time vs. Maximum gradient
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ol 'Optimizing the operating point

« We can use the “valley” point between the low-field fluctuation
peak and the radial secular frequency peaks

 This “valley” is optimized when it occurs at a lower field and has
the lowest linewidth

« We can manipulate the location and depth of the “valley” by
changing the trap RF voltages and eliminating magnetic materials
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Conclusions

« We have developed a clock according to the IMPACT guidelines

that we expect to meet phase Il goals, on track for a Cesium-
beam-level clock by phase three

* We have examined the effects of ion motion, field strength, and
field gradients on clock operation
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We can operate in the “optimal” range below the secular frequency

resonance with the Zeeman levels, despite the presence of gradients
and limitations of shielding

Removal of all magnetic material in manufacturing makes a
substantial difference in our ability to use a lower bias field
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Key Technologies for
Mlnlaturlzatlon & Low Power

Y

Small vacuum ion-trap package:
Can the vacuum level be maintain without an active pump?

Low power RF drive for the ion trap:
* Can we reach the goals of the size and power consumption?

VCSEL based laser sources:
Can the VCSELSs deliver enough light power for operation?

Microwave generation (12.6 GHz) & local oscillator:
* Is there a good low-power solution?

Yb ion generation:
Can we find an efficient way for Yb vapor generation and ionization?
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Circuit boards of the RF drives
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g ‘ Low-Power RF lon Trap Drive

Fundamental limit of the power consumption of
the RF trap by using a tank circuit:

C: the total capacitive load

L: the inductance of the inductor in the tank circuit
Vre: the RF peak voltage across the trap electrodes

Wo C VRF
2Q

Pmln -

VLQQ

Q: the quality factor of the resonant circuit

Because of dissipation in the circuit elements required to drive the
oscillation in the LC resonator, the total power dissipation of the
circuit, Pp, is always greater than Pmin. We have achieved P,/ P

= 1.2 — 1.5. Currently we have demonstrated < 40 mW to drive the
the trap. Further reduction to < 10 mW is achievable by decreasing

the capacitive load.

Efficiencies of different operation parameters
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Microwave oscillator based
on MEMS resonator

gsonator
T,

Releazed 2 53 GHz resonator die [ ~1 mm?)

Pierce Oscillator

50 Ohm Output buffer
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, qEMS Oscillator & Yb Micro Hotplate
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Micro hotplate Yb ovens

* Yb deposited into microhotplate wells
by evaporation, powder deposition &
liguid ammonia solvation.

SEM &
thermal
images

738 2787 46356 666.5

1.5 mm dia., 0.4 mm deep Yb well Haupanniah)

Hotplates for integration into the LTCC
ceramic trap have been designed and
fabricated.




Summary

« The long coherence time of '71Yb ions allows us to operate the clock at
even much higher precision when the performance of the local oscillator is
further improved.

* We have demonstrated the robustness of the miniature (10 c.c.) ion-trap
vacuum packages. No active pump is required to maintain the vacuum
level for continuous operation.

* We have first demonstrated a functioning ceramic ion trap device, which
will be utilized in the future 1 c.c. ion-trap package.

 Carefully using non-magnetic material for the ion-trap device can improve
the long-term clock performance dominated by the magnetic-field drift.

» We have developed various key technologies for Yb ion clock
miniaturization.

* Miniature 369 nm light source is the most challenging technology.
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Dephasing vs B field
for several gradients
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Dephasing time vs. Maximum gradient
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Dephasing time vs. Maximum gradient

57 | Coil 1 (vertical coi); coil axis is across the trap) 59 Dephasing time vs. Maximum gradient
‘ Coil 2 (goil axis is along the trap axis)
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At the bottom of the valley area we can have a gradient as high as 65 mG/cm (to get a 1
second dephasing time), but for these trap parameters we need 130mA to be at that valley

point.
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