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In  the  field  of  nonlinear  dynamics  it  is  well  known  that many  deterministic  nonlinear 

systems are inherently unpredictable beyond a certain critical time, the so called predictability 
horizon.  This limit on system predictability is not due to a lack of physics or choice of numerical 
approximation  but  rather  extreme  sensitivity  to  initial  conditions.    Examples  include  event‐
driven  dynamical  systems,  vibro‐impact  systems,  and  pervasive  fracture.  Beyond  the 
predictability horizon, the system can no longer be described deterministically even though the 
governing equations are deterministic.  Instead,  statistical descriptions are needed along with 
new definitions of convergence with mesh refinement. 

A pervasive fracturing process is one in which a multitude of cracks are dynamically active, 
propagating in arbitrary directions, coalescing, and branching.  Examples include fragmentation 
and progressive structural collapse due to blast effects or seismic events.  Pervasive fracturing 
is  a  highly  nonlinear  process  involving  complex  material  constitutive  behavior,  post‐peak 
material  softening,  localization,  new  surface  generation,  and  ubiquitous  contact.    A  pure 
Lagrangian  computational  method  is  proposed  for  simulating  the  pervasive  fracturing  of 
structures by allowing new cohesive fracture surfaces to nucleate at the inter‐element faces of 
a random polyhedral mesh.   The random polyhedral mesh  is obtained from a randomly close‐
packed (RCP) Voronoi tessellation.  The a priori crack paths of the RCP Voronoi mesh are viewed 
as  instances  of  realizable  random  crack  paths within  a  random  field  representation  of  the 
continuum material properties.  Mesh convergence in a pervasive fracture simulation is viewed 
in a distributional sense rather than at the level of a single realization.   
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