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    A review of the literature shows the existence of dozens of single-cell, 
axisymmetric, Newtonian-fluid vortices that, in one form or another, are solutions to 
the Navier-Stokes Equation.  However, little research has been conducted in the 
literature to investigate common traits that are shared by the vortices.  This 
research attempts to lay out a foundation that seeks mathematical traits that are 
shared by the vortices, with a focus on the azimuthal velocity (vθ).  Notwithstanding 
their diverse mathematical and physical description, it can be shown that the 
vortices are diverse manifestations of a single vortex family—they are united by a 
set of at least seven common mathematical traits.  As a first common trait, we show 
that there are only four possible categories.  Next, by normalizing and overlaying
the vortices into a single figure, three additional traits are noted, namely that 
vθ(r=0) = 0; they have similar azimuthal velocity profiles; and the azimuthal velocity
is asymmetric about r.  Thereafter, a fifth trait is noted by taking the azimuthal 
velocity for all the vortices (as found in the literature), and expressing them as
alternating series’ that expand geometrically with odd exponents.  Finally, two more 
traits are noted by taking limit bounds for each series, thus showing that one bound 
is the Rankine (solid body) vortex, and the other is a Lamb-Oseen sine-like bound.  
In brief, we note that the vortices have seven traits in common, and hereby propose
that the myriad of single-cell, axisymmetric, Newtonian-fluid vortices are essentially 
diverse manifestations of a single vortex family.  

Nomenclature
An =   Coefficient in AVE vortex, n=1, 2, …
AVE =   Aboelkassem, Vatistas, and Esmail 
Cn =   Coefficients used in vortex expansions, n=-1, 0, 1, 2, …
G =   Gas mass flux,  V (kg/m2s)

J1 =   Bessel function of order 1
k =   Coefficient in Chepura and Modified Chepura vortices
n =   Exponential coefficient
PDE =   Partial differential equation
q =   Coefficient in Martynenko’s equations
r =   Radial coordinate for cylindrical system
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r


=   Position vector (m)
RHS =   Right hand side
SNL =   Sandia National Laboratories
u =   Velocity in the r direction (m/s)
UNM =   University of New Mexico

V


=   Velocity vector consisting of (u, v, w) components in cylindrical coordinates (m/s)
v =   Velocity in the θ direction (azimuthal velocity) (m/s)
v =   Azimuthal velocity (m/s)
w =   Velocity in the axial direction (m/s)
z =   Axial coordinate for cylindrical system (direction of jet flow for S = 0)
zO =   Planar slice taken at fixed point along z axis (m)
3D =   Three-dimensional

Greek Symbols
 =   Coefficient in Loitsyanskiy’s equations
 =   Coefficient in Martynenko’s equations
 =   Coefficient in Loitsyanskiy’s equations
 =   Coefficient in AVE vortex

Γ =   Circulation, 

2

0

v(r)rdθ


 (m2/s)

 =   Coefficient in Loitsyanskiy’s equations
 =   Coefficient in Martynenko’s equations
η =   Coefficient in Loitsyanskiy’s equations
η =   Coefficient in Martynenko’s equations
θ =   Azimuthal coordinate for cylindrical system
λ =   Coefficient in AVE vortex
 =   Dynamic viscosity (Pa-s, kg/m-s)

 =   Kinematic viscosity (m2/s)
 =   Density (kg/m3)

 =   Coefficient in Martynenko’s equations
Ω =   Coefficient in Rankine vortex (1/s)
 =   Angular frequency (1/s)
ω =   Coefficient in Martynenko’s equations

Subscripts
max =   Maximum
min =   Minimum
o =   Property taken at fixed value

Superscripts
. =   Time derivative
→ =  Vector

I. Introduction
    Numerous types of single-cell, axisymmetric, Newtonian-fluid swirling vortex flows have been 
developed over the years, such as the

• Loitsyanskiy vortex [Loitsyanskiy, 1953],
• Gortler vortex [Gortler, 1954; Khorrami, 1995],
• Sullivan vortex [Sullivan, 1959; Huang et al., 2008],
• Newman vortex [Newman, 1959],
• Lamb-Oseen vortex (sometimes referred as “Oseen-Lamb”) [Lamb, 1932; Mayer and Powell, 

1992; Sipp, Coppens, and Jacquin, 1999; Chadwick, 2006; Facciolo, 2006; Busch, Ryan, and 
Sheard, 2007; Sereno, Pereira, and Pereira, 2009; Mao and Sherwin, 2009],



• Batchelor vortex (also known as the “q” vortex) [Batchelor, 1964; Tam, 1971; Duck and Foster, 
1980; Mayer and Powell, 1992; Olendraru and Sellier, 1999; Delbende, 2002; Facciolo, 2006;
Mao and Sherwin, 2009],

• Squire vortex [Squire, 1965],
• Burgers vortex [Burgers, 1948; Rott, 1958; Rott, 1959; Maxworthy, Hopfinger, and Redekopp, 

1985; Bazant and Moffatt, 2005], and
• Rankine vortex (also known as the “solid body” vortex) [Rankine, 1858; Loiseleux, Chomaz, and 

Huerre, 1998; Billant, Chomaz, and Huerre, 1998; Facciolo, 2006; Rossi, 2006; Ortega-Casanova 
and Fernandez-Feria, 2009].

The radial, azimuthal, and axial velocity equations for all 15 vortices considered in this research are found 
in Table 1.  
    There are many other vortices, such as vortices whose tangential velocity is only in the shear layer [Lu 
and Lele, 1997; Cooper and Peake, 2002] and the Scully vortex [Scully, 1975; Zioutis et al., 2010].  The 
Batchelor vortex (“q” vortex), which is similar to the Lamb-Oseen vortex, is one of the most popular in the 
literature.  The Batchelor vortex has been used extensively to model aircraft vortex wake issues.  The 
Rankine vortex (“solid body”) is another prevalent vortex found in the literature, and has found usage in 
modeling tornadoes and cyclones.  The Gortler vortex considers vortices whose tangential velocity is nearly 
zero everywhere except in the shear layer.  The recently-developed helicoid vortex models the swirl field 
produced by static, Archimedes-screw swirl devices found in heating and cooling applications.  
    Certainly, the velocity components vary according to which NS terms were included during the original 
derivation of the solution.  Upon a casual search in the literature, one notes that there are not just the 15 
axisymmetric vortices mentioned here, but many more, with more are being added at a fast rate.  There 
seems to be a proliferation of vortices, to a degree that baffles (and perhaps even annoys!), rather than 
provides a higher degree of confidence in vortex modeling.  And indeed, such sentiments have already been 
expressed in the literature [Aboelkassem and Vatistas, 2007].  After all, which vortex is “better” (more 
fundamental), and based upon what criteria?  Many literature reports mention that a given vortex was used 
because it is “widely used…” [Vatistas, Kozel, and Mih, 1991; Alekseenko, et al., 1998; Mao and Sherwin, 
2009; Okulov and Sorensen, 2009; Ortega-Casanova and Fernandez-Feria, 2009].  Further, how do the 
results from a given axisymmetric vortex apply to the others, if at all?  Most importantly, are the vortices 
related to each other, in some form of vortex family, wherein they share certain mathematical 
characteristics?  The subsequent sections in this report discuss a set of seven similar mathematical traits.  

Table 1.  Vortex Velocity Definitions

Vortex Radial Velocity Azimuthal Velocity Axial Velocity

Rankine

1 field, f(r)

0

2

Ωr, r a  ("solid body")

Ωa
, r > a  ("free")

r

 0

Lamb-Oseen

1 field, f(r,t)

0 2r
-
4 t1 - e

2 r




 
 
 
 

0

Burgers

3 fields, f(r,z)
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21 - e
2 r





 
 
 
 
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Vortex Radial Velocity Azimuthal Velocity Axial Velocity

Loitsyanskiy3 
fields, f(r,z)

2 2

22 2

1 - 
4
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4
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  
 

   

  
 
 

22 2 2

1
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4

z



  
 
 

2

22 2

2 1

1 + 
4

z



  
 
 

Gortler

3 fields, f(r,z)

2

22

4 0

1 + 
4

z


 

 
 
 

:
22

1 + 
4

z

 

 
 
 

2

22

2

1 + 
4

z

 

 
 
 

Newman

3 fields, f(r,z)

2

4
2

e
2

Wr

z
Ar

z






2

41 - e
Wr

z
A

r


 
 
 
 

2

4e
Wr

z
A

z




Sullivan

3 fields, f(r,z)

2

2
6

1 - e
ar

ar
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
  

   
 
 
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 
 
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Batchelor

2 fields, f(r)
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 
 
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 
 
 

Squire

1 field, f(r,z)
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
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
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Chepura

1 field, f(r) 0
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Martynenko
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AVE Vortex
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0
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Vortex Radial Velocity Azimuthal Velocity Axial Velocity

Modified 
Chepura

1 field, f(r)
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 

0
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Newman
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4
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z
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
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II. Trait 1: Four Categories of Axisymmetric Vortices
    Note that a 3D generalized velocity field in cylindrical coordinates can be expressed as

 V(r,θ,z) = V u(r,θ,z),v(r,θ,z),w(r,θ,z)
r r

.               (1)

If the flow is symmetric about the axial coordinate z, then it moves about in circles around the z axis [Lamb, 
1932].  Thus, the flow field is still 3D, but is axisymmetric about z.  In such case, the above equation 
reduces to

  r θ zV(r,z) = V u(r,z),v(r,z),w(r,z)  = u(r,z)δ +v(r,z)δ +w(r,z)δ
r r rr r

.   (2)

Even swirling flows that have a -dependence eventually become axisymmetric as a result of viscous
effects [Loitsyanskiy, 1953].  
    Even swirling flows that have a -dependence eventually become axisymmetric as a result of viscous 
effects [Loitsyanskiy, 1953].  In any case, when axisymmetry is assumed, the Navier-Stokes PDE is 
simplified considerably, as all partials with respect to  vanish.  Note that the overall flow field must retain 
the azimuthal v velocity component in order to induce a vortex (swirl), but that none of the velocity 
components retain the  dependency.  Due to the number of possible permutations for axisymmetric 
vortices (see Table 2), then there are at most four distinct types of flows:

 V(r,z) = V u(r,z),v(r,z),w(r,z)
r r

, (3)

 V(r,z) = V 0,v(r,z),w(r,z)
r r

, (4)

 V(r,z) = V u(r,z),v(r,z),0
r r

, and (5)

 V(r,z) = V 0,v(r,z),0
r r

. (6)

Table 2.  The Four Categories of Axisymmetric Vortices

Vortex Category Radial 
Velocity, u

Azimuthal 
Velocity, v

Axial
Velocity, w

 V(r,z) = V u(r,z),v(r,z),w(r,z)
r r

Example: Burgers
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
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 V(r,z) = V 0,v(r,z),w(r,z)
r r

Example: Batchelor
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 V(r,z) = V u(r,z),v(r,z),0
r r

Example: none found in the 
literature

u(r,z) v(r,z) 0

 V(r,z) = V 0,v(r,z),0
r r

Example: Rankine

0

2

Ωr, r a

Ωa
, r > a

r

 0

It is noteworthy that many examples were found in the literature for the first, second, and fourth categories, 
but none for the third.  This should be investigated further.

III. Three Traits of the Azimuthal Velocity Profile
    Despite the varied developmental origins and applications of vortex models, when normalized and 
overlayed into a single figure, the vortices display three similar traits, as shown in Figure 1.  

Figure 1.  Rankine, Burgers, Loitsyanskiy, Gortler, Newman, Sullivan, Batchelor, Chepura, 
AVE, and Rodriguez/El-Genk Helicoid (REG): Normalized Azimuthal Velocity Overlay.



    Figure 1 expands the work of the previous researchers just discussed by showing that the Rankine, 
Burgers, Loitsyanskiy, Gortler, Newman, Sullivan, Batchelor, Chepura, AVE, and the Rodriguez/El-Genk 
helicoid (REG) vortex, and indeed all 15 vortices discussed here, are part of a vortex family whose 
normalized azimuthal velocity is sine-like; so as to not overwhelm the Figure, only 10 vortices are 
displayed.  It is also interesting that sinusoidal azimuthal velocity distributions have already been used in 
recent experiments found in the literature [Semaan and Naughton, 2010].  

    First, it is noted that at r=0, vθ(r) = 0 for all the vortices.  Secondly, they share a similar sine-like profile 
when the vortex equation parameters are adjusted (a discussion for the sine-like profile will be provided 
later).  Third, the vθ(r) profile is asymmetric about r.  That is, vθ(r) = vθ(-r), and so the vortices have odd 
azimuthal velocity functions.  

IV. Trait 5: Series Formulation of Vortices

    Despite the varied mathematical forms that the azimuthal velocities have in the literature, all can be 
expressed as alternating series that expand geometrically with odd exponents, as noted in Table 3.  We used 
Maple to obtain the series expansions.

Table 3.  Mathematical Form and Series Expansion

Vortex Name Azimuthal Velocity Mathema-tical 
Form (z=z0; 
t=t0, const.)

Series
Expansion

Rankine

(“solid body”)

[Rankine, 1858]

2

2

Ωr, r a

Ωa
, r > a

r

=
2 a






Series
0C

r

1C r 

Lamb-Oseen

[Lamb, 1932]

2r
-
4 t1 - e

2 r




 
 
 
 

Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Burgers

[Burgers, 1948].  
(The vortex has 

also been referred 
as the “Burgers-

Rott”, though 
Rott’s paper was 

published 10 years 
later)

[Rott, 1958]

21
Re

2

1
Re

2

1 1

1

r

e

r
e





 
 

 
  

Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Loitsyanskiy

[Loitsyanskiy, 
1953]

22 2 2

1
,

1 + 
4

1

z

r

z



  
 
 

 


Rational 3 5 7
1 3 5 7C r  C r  + C r   C r ... 



Vortex Name Azimuthal Velocity Mathema-tical 
Form (z=z0; 
t=t0, const.)

Series
Expansion

Gortler

[Gortler, 1954]
0

2
1 0

22 2

0

2r

r

r
1 + 

r

C z

z   
  
   

Rational 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Newman

[Newman, 1959]

2

41 - e
2

Wr

z

r




 
 
 
 

Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Sullivan

[Sullivan, 1959];

Using alternate 
form as a 

combination of two 
vortices: [Chuah 

and Kushida, 2007]

 

2

2

r
-

1  -  e , 0 r <

a n d

(1 )

,
1

r< R

f

R

c
r

a R V

r

a e

r

c



 
  
 
 

 
 

 
  

 
 



Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Batchelor

(“q”)

[Batchelor, 1964]

2Ur
-

0 4 z1-e
C

r

 
 
 
 



Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Squire

[Squire, 1965]

2
0

4( )1 - e
2

W r

aK zK

r




 
 
  





Exponential 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

Chepura

[Chepura et al., 
1969; Chepura 

1971]

2
r

2 - , 0
2 a

kr
r a

  
   

   

,  a
2r

c

ka
r r 

Series 3
1 3C r  C r  

Martynenko

[Martynenko, 
1989]

 
 

3 1 1

2 2 2
0 0

224 1

L K   
     

Rational 3 5 7
1 3 5 7C r  C r  + C r   C r ... 

AVE Vortex 
[Aboelkassem, 
Vatistas, and 
Esmail, 2005]

 
2-2

1 n
1

e n t

n
n

r A J r


 



   
Bessel 3 5 7

1 3 5 7C r  C r  + C r   C r ... 

REG helicoid
vortex

[Rodriguez and El-

sin(πr), for small r Sine 3 5 7
1 3 5 7C r  C r  + C r   C r ... 



Vortex Name Azimuthal Velocity Mathema-tical 
Form (z=z0; 
t=t0, const.)

Series
Expansion

Genk, 2008, 2010]

Modified Chepura

[Rodriguez, 2011]

3 5
k r k r k r

   + , 
1! a 3! a 5! a

0 r a

     
     

     

 

Series 3 5
1 3 5C r  C r + C r

Modified Newman 
[Rodriguez, 2011]

2
3

2C e C r Exponential
1

3 5 7
1 3 5 7

C
-  

r

+ C r - C r  + C r  - C r ...



    From Table 3, it is noted that the vθ vortex distributions can be classified according to five mathematical 
functions:

1. Series (Rankine, Chepura, Modified Chepura),
2. Exponential (Lamb-Oseen, Burgers, Newman, Sullivan, Batchelor, Squire, Modified Newman),
3. Rational (Loitsyanskiy, Gortler, Martynenko),
4. Bessel (AVE), and
5. Sine (REG helicoid).

    A casual inspection of the five mathematical forms suggests that they are quite different.  However, that 
is not the picture suggested by Figure 1, with its 10 vortices that seemingly share a similar sine-like profile.  
Upon further thought, the Rankine, modified Chepura, and REG are shown to have the following in 
common: the formulation for Rankine vortex for r≤a and the modified Chepura for r≤a have similar series 
terms when compared to an expansion of the REG helicoid.  In particular, for the Rankine Domain 1, 

  1Rankinev r   C r .          (7)

Here, Domain 1 refers to the “solid body” part of the vortex, where the fluid essentially behaves as if 
attached to a rotating, solid body.  Domain 2 refers to the “free” vortex, away from the solid body region, 
where the vortex velocity decays due to viscous effects.
    The modified Chepura for Domain 1 is [Rodriguez, 2011]

 
3

3
1 3Chepura

k r k r
v r    -  r  C r . 

1! a 3! a
C

   
     

   
              (8)

and a series expansion of sine for the REG helicoid yields

   
3 5 7

3 5 7 3 5 7
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Next, by noting from Figure 1 that 1) the REG helicoid and the AVE vortex [Aboelkassem, Vatistas, and 
Esmail, 2005] are very similar in profile and 2) that the Bessel function of the first kind has long been 
observed to behave as the sine function, we are tempted to also do a series expansion for it.  By searching 
for the most sine-like series expansion for the Bessel function (see Figure 2), and setting t=to and n=1, 
Maple calculated the series expansion as
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Indeed, the AVE vortex can uniquely be expressed as Fourier-Bessel series [Aboelkassem, Vatistas, and 
Esmail, 2005].

Figure 2.  Bessel and Sine Azimuthal Velocities.

    Therefore, this shows that the Rankine, modified Chepura, REG helicoid, and the AVE vortex can be 
collapsed into a single mathematical series form.  By using Maple, we easily obtain series expansions for 
the rational and exponential forms.  Not surprisingly, it is found that
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and likewise,
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Figure 3 shows that Loitsyanskiy vortex with parameters that make it the most “sine-like” (LHS).  In fact, it 
is easy to observe that such is the case for small r, say r ≤ 0.7.  The RHS of Figure 3 shows the relative 
error between the most sine-like Loitsyanskiy and sin(πr).  The same analysis was performed for the 
Newman vortex, as shown in Figure 4.  The figure shows that same conclusions can be made with the 
Newman vortex as was done with the Loitsyanskiy vortex.
    Therefore, all the vortices presented herein can be represented as alternating geometric series with odd 
exponents!
    Interestingly, for non-Newtonian swirling fluids, the axial and azimuthal velocities were assumed to be 
representable as series expansions with alternating signs exponential power [Som, 1983]:

  2
0 1 2non-Newtonian,Somv r   C   C r  C r                (13)



and 

  2 3
0 1 2 3non-Newtonian,Somw r   C   C r  C r  + C r    .             (14)

Figure 3.  LHS: Loitsyanskiy and Sine Azimuthal Distributions.  RHS: Relative Error 
between Both Distributions.

Figure 4.  LHS: Newman and Sine Azimuthal Distributions.  RHS: Relative Error between 
Both Distributions.

V. Traits Six and Seven: Series Bounds

    Some researchers have noted that some of the most “popular” vortices share some basic characteristics.  
Perhaps the earliest example of this was noted by Chepura, where he overlayed the normalized azimuthal 
velocity of his newly-formulated vortex (the Chepura vortex) with the Rankine vortex [Chepura et al., 
1969].  This showed that the two velocity profiles were similar (e.g. both had zero velocity at r=0 and their 
velocity profiles were quite similar), as noted in Figure 4.  In the figure, the dashed and solid lines are the 
Rankine and Chepura vortices, respectively.  Further, it has also been shown that a vortex formulation with 
azimuthal velocity represented as a function of r and n very closely matched the Burgers vortex for n=2 and 



was Rankine-like for n=∞ [Vatistas, Kozel, and Mih, 1991].  In this context, n is an exponential value for r.  
As another example, the azimuthal velocity for the Rankine, Scully, and Lamb vectors were normalized 
and overlayed, only to show that their profiles were quite similar [Alekseenko et al., 1999].  Finally, the 
normalized azimuthal velocity for the Rankine, Oseen-Lamb, Burgers-Rott, and Sullivan vortices were also 
plotted [Batterson, Maicke, and Majdalani, 2007]; see Figure 5.  Interestingly, the authors called such plot a 
“unified normalization”.
    Note that there are two versions of the Sullivan vortex, depending on the number of “cells”.  The single-
cell Sullivan vortex is included in this research.  The “two-cell” model and (also called “bidirectional) 
[Batterson, Maicke, and Majdalani, 2007], consists of an inner down flow region coexists with a 
downward-flowing region.  In other words, the swirling flow has “nested” regions with reversed flow 
interspersed upon the swirling field [Donaldson and Sullivan, 1960].  Note that the focus of this work is for 
“one-cell” vortices, not the more complex “two-cell” types.

Figure 4.  Chepura and Rankine Vortices: Normalized Azimuthal Velocity Overlay 
[Chepura, 1969].

Figure 5.  Rankine, Oseen-Lamb, Burgers-Rott, and Sullivan Vortices: Normalized 
Azimuthal Velocity Overlay [Batterson, Maicke, and Majdalani, 2007].



    Finally, we note that the azimuthal velocity approaches the Rankine solid-body azimuthal velocity for 
large C1 and small C3, C5, etc.
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This explains why the “solid body” Rankine vortex served as a bound for Chepura’s work.  On the other 
hand, the Lamb-Oseen-like sine limit is approached when 
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            (16)

Thus, this sheds light as to why the vortices in Figure 1 have a “sine-like” form.  
    When the limits in Equations 15 and 16 are applied to the series forms found in Table 3, it is noted that 
all the vortices collapse to the Rankine vortex bound on the one hand, and on the other extreme, all the 
vortices collapse to a Lamb-Oseen-like sine bound.  

VI. Conclusion
    Steps were taken towards establishing that 15 single-cell, axisymmetric, Newtonian vortices share seven 
mathematical characteristics, and are therefore essentially diverse manifestations of a single vortex family 
that unites them.  If so, then it is likely that a given mathematical analysis afforded to a particular vortex 
also applies to the others.
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