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A review of the literature shows the existence of dozens of single-cell,
axisymmetric, Newtonian-fluid vortices that, in one form or another, are solutions to
the Navier-Stokes Equation. However, little research has been conducted in the
literature to investigate common traits that are shared by the vortices. This
research attempts to lay out a foundation that seeks mathematical traits that are
shared by the vortices, with a focus on the azimuthal velocity (vq). Notwithstanding
their diverse mathematical and physical description, it can be shown that the
vortices are diverse manifestations of a single vortex family—they are united by a
set of at least seven common mathematical traits. As a first common trait, we show
that there are only four possible categories. Next, by normalizing and overlaying
the vortices into a single figure, three additional traits are noted, namely that
vo(r=0) = 0; they have similar azimuthal velocity profiles; and the azimuthal velocity
is asymmetric about r. Thereafter, a fifth trait is noted by taking the azimuthal
velocity for all the vortices (as found in the literature), and expressing them as
alternating series’ that expand geometrically with odd exponents. Finally, two more
traits are noted by taking limit bounds for each series, thus showing that one bound
is the Rankine (solid body) vortex, and the other is a Lamb-Oseen sine-like bound.
In brief, we note that the vortices have seven traits in common, and hereby propose
that the myriad of single-cell, axisymmetric, Newtonian-fluid vortices are essentially
diverse manifestations of a single vortex family.

Nomenclature
A, = Coefficient in AVE vortex, n=1, 2, ...
AVE = Aboelkassem, Vatistas, and Esmail
Ca = Coefficients used in vortex expansions, n=-1,0, 1, 2, ...
G = Gas mass flux, p V (kg/m’s)
J = Bessel function of order 1
k = Coefficient in Chepura and Modified Chepura vortices
n = Exponential coefficient
PDE = Partial differential equation
q = Coefficient in Martynenko’s equations

r = Radial coordinate for cylindrical system
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= Position vector (m)

= Right hand side

= Sandia National Laboratories

= Velocity in the r direction (m/s)
= University of New Mexico

= Velocity vector consisting of (u, v, w) components in cylindrical coordinates (m/s)
Velocity in the 0 direction (azimuthal velocity) (m/s)

= Azimuthal velocity (m/s)

Velocity in the axial direction (m/s)

Axial coordinate for cylindrical system (direction of jet flow for S = 0)

Planar slice taken at fixed point along z axis (m)

= Three-dimensional

Greek Symbols
= Coefficient in Loitsyanskiy’s equations
= Coefficient in Martynenko’s equations
= Coefficient in Loitsyanskiy’s equations
= Coefficient in AVE vortex

2n
= Circulation, I v(r)rd® (m%s)

0
= Coefficient in Loitsyanskiy’s equations
= Coefficient in Martynenko’s equations
= Coefficient in Loitsyanskiy’s equations
= Coefficient in Martynenko’s equations
= Azimuthal coordinate for cylindrical system
= Coefficient in AVE vortex
= Dynamic viscosity (Pa-s, kg/m-s)
= Kinematic viscosity (m?/s)
= Density (kg/m’)
= Coefficient in Martynenko’s equations
= Coefficient in Rankine vortex (1/s)
= Angular frequency (1/s)
= Coefficient in Martynenko’s equations

Subscripts
= Maximum
= Minimum
= Property taken at fixed value

Superscripts
= Time derivative

= Vector

I. Introduction

Numerous types of single-cell, axisymmetric, Newtonian-fluid swirling vortex flows have been
developed over the years, such as the

Loitsyanskiy vortex [Loitsyanskiy, 1953],

Gortler vortex [Gortler, 1954; Khorrami, 1995],

Sullivan vortex [Sullivan, 1959; Huang et al., 2008],

Newman vortex [Newman, 1959],

Lamb-Oseen vortex (sometimes referred as “Oseen-Lamb’) [Lamb, 1932; Mayer and Powell,
1992; Sipp, Coppens, and Jacquin, 1999; Chadwick, 2006; Facciolo, 2006; Busch, Ryan, and
Sheard, 2007; Sereno, Pereira, and Pereira, 2009; Mao and Sherwin, 2009],



»  Batchelor vortex (also known as the “q” vortex) [Batchelor, 1964; Tam, 1971; Duck and Foster,
1980; Mayer and Powell, 1992; Olendraru and Sellier, 1999; Delbende, 2002; Facciolo, 2006;
Mao and Sherwin, 2009],
*  Squire vortex [Squire, 1965],
*  Burgers vortex [Burgers, 1948; Rott, 1958; Rott, 1959; Maxworthy, Hopfinger, and Redekopp,
1985; Bazant and Moffatt, 2005], and
*  Rankine vortex (also known as the “solid body” vortex) [Rankine, 1858; Loiseleux, Chomaz, and
Huerre, 1998; Billant, Chomaz, and Huerre, 1998; Facciolo, 2006; Rossi, 2006; Ortega-Casanova
and Fernandez-Feria, 2009].
The radial, azimuthal, and axial velocity equations for all 15 vortices considered in this research are found
in Table 1.

There are many other vortices, such as vortices whose tangential velocity is only in the shear layer [Lu
and Lele, 1997; Cooper and Peake, 2002] and the Scully vortex [Scully, 1975; Zioutis et al., 2010]. The
Batchelor vortex (“q” vortex), which is similar to the Lamb-Oseen vortex, is one of the most popular in the
literature. The Batchelor vortex has been used extensively to model aircraft vortex wake issues. The
Rankine vortex (“solid body”) is another prevalent vortex found in the literature, and has found usage in
modeling tornadoes and cyclones. The Gortler vortex considers vortices whose tangential velocity is nearly
zero everywhere except in the shear layer. The recently-developed helicoid vortex models the swirl field
produced by static, Archimedes-screw swirl devices found in heating and cooling applications.

Certainly, the velocity components vary according to which NS terms were included during the original
derivation of the solution. Upon a casual search in the literature, one notes that there are not just the 15
axisymmetric vortices mentioned here, but many more, with more are being added at a fast rate. There
seems to be a proliferation of vortices, to a degree that baffles (and perhaps even annoys!), rather than
provides a higher degree of confidence in vortex modeling. And indeed, such sentiments have already been
expressed in the literature [Aboelkassem and Vatistas, 2007]. After all, which vortex is “better” (more
fundamental), and based upon what criteria? Many literature reports mention that a given vortex was used
because it is “widely used...” [Vatistas, Kozel, and Mih, 1991; Alekseenko, et al., 1998; Mao and Sherwin,
2009; Okulov and Sorensen, 2009; Ortega-Casanova and Fernandez-Feria, 2009]. Further, how do the
results from a given axisymmetric vortex apply to the others, if at all? Most importantly, are the vortices
related to each other, in some form of vortex family, wherein they share certain mathematical
characteristics? The subsequent sections in this report discuss a set of seven similar mathematical traits.

Table 1. Vortex Velocity Definitions

Vortex Radial Velocity Azimuthal Velocity Axial Velocity

Rankine 0 Qr,r<a ("solid body") 0

1 field, (1) 2
’ Qa
,r>a ("free")
Lamb-Oseen 0 r P 0
1 field, f(r,t) i I P
2nr
Burgers -ar r ar’ 2az
3 fields, f(r,z) —|1-e?%




Vortex

Radial Velocity

Azimuthal Velocity Axial Velocity
Loitsyanskiy3 o’n? 1 oyn 202 1
fields, f(r,z) om|1- 21 — . .
oy 4 z a2n2 z ’n?
2. 2)? I+ 4 1+ en
z
1+ 40 4
4
Gortler g2 4% & vV 2
3 fields, f(1,2) v ST D~ ———
w_~ 4 . - g z g2
z 2 2 1 +
2 2 7
Newman Ar W ) it _:V
3 fields, f(r,z) ——¢€ vz —|1-e %= —e M=
2z r z
Sullivan 6v o s _ar?
3 fields, f{(r,z) —ar+—[l-e 2V} — |1 -e ,0 < r<c 2az[1 -3¢ ¥
r r
Batchelor 0 C o _[1 jz
2 fields, f(r) —O[l-e vz J W,e
r
Squire 0 K Wor? 0
1 field, f(r,z) — 4("+“K )z
2
Chepura 0
1 field, f(r) 0 (ij ,0<r<r
T,
e , n<r<r,
2r
Martynenko 1 3 1 1 K, 2a
— 2 B —
3 fields, f(r,z) B o LO [ KO jZ ((XT])Z : - (1+ an)z zq
4np \ mpv® (1+an)
AVE Vortex 0 5 © A2 0
1 field, f(r,0) Bor—24,J, (hBr)e
n=1
Helicoid 0 sin(nr), for small r WO

2 fields, f(r)




Vortex Radial Velocity Azimuthal Velocity Axial Velocity
Modified 0 3 5 0
Chepura k I E r + E I ,
1 field, f(r) I, 3Nt Sy,
0<r<r
Modified a4 _w? i
Newman __’;e 4vz Ae 4= T vz
3 fields, (r,2) 2z “free vortex” domain z

II. Trait 1: Four Categories of Axisymmetric Vortices
Note that a 3D generalized velocity field in cylindrical coordinates can be expressed as

V(r.0.2) = V[u(r,0,2).v(.0.2),w(r.0.2)] 0

If the flow is symmetric about the axial coordinate z, then it moves about in circles around the z axis [Lamb,
1932]. Thus, the flow field is still 3D, but is axisymmetric about z. In such case, the above equation
reduces to

\lf(r,z) = {7[u(r,z),v(r,z),w(r,z)] = u(r,z)é‘)r Jrv(r,z)%)e +w(r,z)$‘>z. 2)

Even swirling flows that have a 6-dependence eventually become axisymmetric as a result of viscous
effects [Loitsyanskiy, 1953].

Even swirling flows that have a 6-dependence eventually become axisymmetric as a result of viscous
effects [Loitsyanskiy, 1953]. In any case, when axisymmetry is assumed, the Navier-Stokes PDE is
simplified considerably, as all partials with respect to 0 vanish. Note that the overall flow field must retain
the azimuthal v velocity component in order to induce a vortex (swirl), but that none of the velocity
components retain the 6 dependency. Due to the number of possible permutations for axisymmetric
vortices (see Table 2), then there are at most four distinct types of flows:

\1/(r,z) = \1/ [u(r,z),v(r,z),w(r,z)] , 3)
{7(r,z) -V [0,v(r,2),w(r,2)], 4)
{/(r,z) = {/[u(r,z),v(r,z),O] , and (5)
V(r.2) = V[0v(r2).0]. (6)

Table 2. The Four Categories of Axisymmetric Vortices

Vortex Category Radial Azimuthal Axial
Velocity, u Velocity, v Velocity, w
1 1
V(r.2) = V[u(r2).v(r.2).w(r,2)] r, = 20
—|1-e?
Example: Burgers 2nr




1 1
= 0 ur? 2
V(r,z) = V[0,v(1,2),w(1,2) | q L W e{g]
Example: Batchelor ” 0
1 1
V(1,2) = V[u(r,2),v(r,2),0] u(r,2) v(1,2) 0
Example: none found in the
literature
1 1
V(r,z) = V[O,V(r,z),O] 0 Qr,r<a 0
Example: Ranki Qa’
ple: Rankine r>a
T

It is noteworthy that many examples were found in the literature for the first, second, and fourth categories,
but none for the third. This should be investigated further.
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Normalized Azimuthal Velocity

III. Three Traits of the Azimuthal Velocity Profile
Despite the varied developmental origins and applications of vortex models, when normalized and
overlayed into a single figure, the vortices display three similar traits, as shown in Figure 1.
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Figure 1. Rankine, Burgers, Loitsyanskiy, Gortler, Newman, Sullivan, Batchelor, Chepura,
AVE, and Rodriguez/El-Genk Helicoid (REG): Normalized Azimuthal Velocity Overlay.



Figure 1 expands the work of the previous researchers just discussed by showing that the Rankine,
Burgers, Loitsyanskiy, Gortler, Newman, Sullivan, Batchelor, Chepura, AVE, and the Rodriguez/El-Genk
helicoid (REG) vortex, and indeed all 15 vortices discussed here, are part of a vortex family whose
normalized azimuthal velocity is sine-like; so as to not overwhelm the Figure, only 10 vortices are
displayed. It is also interesting that sinusoidal azimuthal velocity distributions have already been used in
recent experiments found in the literature [Semaan and Naughton, 2010].

First, it is noted that at r=0, vy(r) = O for all the vortices. Secondly, they share a similar sine-like profile
when the vortex equation parameters are adjusted (a discussion for the sine-like profile will be provided
later). Third, the vy(r) profile is asymmetric about r. That is, vy(r) = ve(-r), and so the vortices have odd
azimuthal velocity functions.

IV. Trait 5: Series Formulation of Vortices

Despite the varied mathematical forms that the azimuthal velocities have in the literature, all can be
expressed as alternating series that expand geometrically with odd exponents, as noted in Table 3. We used
Maple to obtain the series expansions.

Table 3. Mathematical Form and Series Expansion

Vortex Name Azimuthal Velocity Mathema-tical Series
Form (z=z; Expansion
t=t,, const.)
Rankine Qr,r<a Series C,
(“solid body™) > T
[Rankine, 1858] ,r>a
r Cr
T
27a’
Lamb-Oseen r o Exponential Clr _ C3I‘3 + CSI‘S _ C7I‘7...
[Lamb, 1932] —|l-e*
2rr
Burgers e Exponential Clr _ C3I‘3 + CSI‘S _ C7I‘7...
[Burgers, 1948]. 1l 1-e
(The vortex has r TRe
also been referred l-e?
as the “Burgers-
Rott”, though
Rott’s paper was
published 10 years
later)
[Rott, 1958]
Loitsyanski Rational 3 5 7
o Y k.y iz oyn : Cr-Cr +Cg - Cr'..
oitsyanskiy, ~ 2. 2\2’
1953] 1+ %M
4
1 r
nN=—r—=-—
Jv z




Vortex Name Azimuthal Velocity Mathema-tical Series
Form (z=z; Expansion
t=t,, const.)
Gortler ﬁ Rational Cr — C3I‘3 + CSI‘S - C, e
[Gortler, 1954] C1 Zj I,
52 52
1+
Iy
Newman r o Exponential Clr _ C3I‘3 + CSI'S _ C7I‘7
[Newman, 1959] —|1-e %=
2nr
Sullivan r r? Exponential Clr _ C3I‘3 + CSI'S _ C7I‘7
[Sullivan, 1959]; | —|1 -e /7 |,0 < r<c
Using alternate r
form as a and
combination of two
vortices: [Chuah 1-a)RV,
and Kushida, 2007] - *
al (1 —e ’ ) ’
r
c £ r<R
Batchelor C o Exponential Cr - C3r3 + CSI‘5 - C7I‘7...
(“q”) 0 l_e 4vz
[Batchelor, 1964] r
Squire K w? Exponential Clr _ C3I‘3 + CSI‘S _ C7I‘7
[Squire, 1965] |1 - b=
2nr
Chepura I 0\ Series Cr — C3I‘3
[Chepura et al., —2-|—] [,0<r<a
1969; Chepura 2 a
1971]
ka
—,asr<r,
2r
Martynenko 3 1 1 Rational Cr-Cr+Cx° - Cr’
[Martynenko, L, ( K, ) (om)z o 1 3 5 7
1989] dnu (npv? ) (14 om)’
AVE Vortex 2 2 Bessel Cr-Cr +Cx - Cr’
[Aboelkassem, Bzr—ZAnJl(knBr)e'k”B’ ! 3 5 [
Vatistas, and n=1
Esmail, 2005]
REG helicoid sin(nr), for small r Sine Cr — C3I‘3 + CSI‘S - C, e
vortex

[Rodriguez and El-




Vortex Name Azimuthal Velocity Mathema-tical Series
Form (z=z; Expansion
t=t,, const.)

Genk, 2008, 2010]

Modified Chepura 3 5 Series _ 3 5
k(r k(r k(r Cr—-Cr+Cyr
[Rodriguez, 2011] | —| —| — 5 - + ; —

-\a \a

Modified Newman C efquz Exponential C,
5 ==L

[Rodriguez, 2011] r_

3 5 7
+Cr-Cir +Cr -Cor'...

From Table 3, it is noted that the vy vortex distributions can be classified according to five mathematical
functions:
1. Series (Rankine, Chepura, Modified Chepura),
2. Exponential (Lamb-Oseen, Burgers, Newman, Sullivan, Batchelor, Squire, Modified Newman),
3. Rational (Loitsyanskiy, Gortler, Martynenko),
4. Bessel (AVE), and
5. Sine (REG helicoid).

A casual inspection of the five mathematical forms suggests that they are quite different. However, that
is not the picture suggested by Figure 1, with its 10 vortices that seemingly share a similar sine-like profile.
Upon further thought, the Rankine, modified Chepura, and REG are shown to have the following in
common: the formulation for Rankine vortex for r<a and the modified Chepura for r<a have similar series
terms when compared to an expansion of the REG helicoid. In particular, for the Rankine Domain 1,

VRankine (T) = CiI'- (7)

Here, Domain 1 refers to the “solid body” part of the vortex, where the fluid essentially behaves as if
attached to a rotating, solid body. Domain 2 refers to the “free” vortex, away from the solid body region,
where the vortex velocity decays due to viscous effects.

The modified Chepura for Domain 1 is [Rodriguez, 2011]

k(r k(rY
VChepura (r) = F[ j' ;[_j = Cr - C3r3‘ ®)

a a

and a series expansion of sine for the REG helicoid yields

3
v(r)=sin(mwr) = wr - %r3+ %rs - %H...z Cr — Cr* +Cyr° — Cyr'... ©)

Next, by noting from Figure 1 that 1) the REG helicoid and the AVE vortex [Aboelkassem, Vatistas, and
Esmail, 2005] are very similar in profile and 2) that the Bessel function of the first kind has long been
observed to behave as the sine function, we are tempted to also do a series expansion for it. By searching
for the most sine-like series expansion for the Bessel function (see Figure 2), and setting t=to and n=1,
Maple calculated the series expansion as




Vg = serie{ﬁzr—i:AnJ1 (Xnﬁr)e')"z'ﬁ’} (10)

n=1

= 3.173r — 5.5 +3.06r" — 0.869r"... = Cr — C,;r’ +C,r" — C,r'...

Indeed, the AVE vortex can uniquely be expressed as Fourier-Bessel series [Aboelkassem, Vatistas, and
Esmail, 2005].
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Figure 2. Bessel and Sine Azimuthal Velocities.

Therefore, this shows that the Rankine, modified Chepura, REG helicoid, and the AVE vortex can be
collapsed into a single mathematical series form. By using Maple, we easily obtain series expansions for
the rational and exponential forms. Not surprisingly, it is found that

e -C,r? 3 5 7
Vexponential = serze{T(l -e ) =Cr-Cr +Cgr - Cr'... (11)
and likewise,
Viational = Series [rational(Loitsyanskiy, Gortler, or Martynenko)} (12)

3 5 7
=Cr-Cgr +Cyr - Cr'..

Figure 3 shows that Loitsyanskiy vortex with parameters that make it the most “sine-like” (LHS). In fact, it
is easy to observe that such is the case for small r, say r < 0.7. The RHS of Figure 3 shows the relative
error between the most sine-like Loitsyanskiy and sin(nr). The same analysis was performed for the
Newman vortex, as shown in Figure 4. The figure shows that same conclusions can be made with the
Newman vortex as was done with the Loitsyanskiy vortex.

Therefore, all the vortices presented herein can be represented as alternating geometric series with odd
exponents!

Interestingly, for non-Newtonian swirling fluids, the axial and azimuthal velocities were assumed to be
representable as series expansions with alternating signs exponential power [Som, 1983]:

= —C, + Cr - G, (13)

Vnon-NeWtonian,Som (I‘)
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Figure 3. LHS: Loitsyanskiy and Sine Azimuthal Distributions. RHS: Relative Error
between Both Distributions.

u 1 5 -
el N g 0.8
3 M 0.6
& 0.5 3 . 0.4
“ i T 0.2
1 -0.6 0.2 0.6 1 0.2 0.6 1
‘.‘ r r
A\ -0 451
N\
\
_1-
Legend
— Newman
--------- s"f"

Figure 4. LHS: Newman and Sine Azimuthal Distributions. RHS: Relative Error between
Both Distributions.

V. Traits Six and Seven: Series Bounds

Some researchers have noted that some of the most “popular” vortices share some basic characteristics.
Perhaps the earliest example of this was noted by Chepura, where he overlayed the normalized azimuthal
velocity of his newly-formulated vortex (the Chepura vortex) with the Rankine vortex [Chepura et al.,
1969]. This showed that the two velocity profiles were similar (e.g. both had zero velocity at r=0 and their
velocity profiles were quite similar), as noted in Figure 4. In the figure, the dashed and solid lines are the
Rankine and Chepura vortices, respectively. Further, it has also been shown that a vortex formulation with
azimuthal velocity represented as a function of r and n very closely matched the Burgers vortex for n=2 and



was Rankine-like for n=co [Vatistas, Kozel, and Mih, 1991]. In this context, n is an exponential value for r.
As another example, the azimuthal velocity for the Rankine, Scully, and Lamb vectors were normalized
and overlayed, only to show that their profiles were quite similar [Alekseenko et al., 1999]. Finally, the
normalized azimuthal velocity for the Rankine, Oseen-Lamb, Burgers-Rott, and Sullivan vortices were also
plotted [Batterson, Maicke, and Majdalani, 2007]; see Figure 5. Interestingly, the authors called such plot a
“unified normalization”.

Note that there are two versions of the Sullivan vortex, depending on the number of “cells”. The single-
cell Sullivan vortex is included in this research. The “two-cell” model and (also called “bidirectional)
[Batterson, Maicke, and Majdalani, 2007], consists of an inner down flow region coexists with a
downward-flowing region. In other words, the swirling flow has “nested” regions with reversed flow
interspersed upon the swirling field [Donaldson and Sullivan, 1960]. Note that the focus of this work is for
“one-cell” vortices, not the more complex “two-cell” types.
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Figure 4. Chepura and Rankine Vortices: Normalized Azimuthal Velocity Overlay
[Chepura, 1969].
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Figure 5. Rankine, Oseen-Lamb, Burgers-Rott, and Sullivan Vortices: Normalized
Azimuthal Velocity Overlay [Batterson, Maicke, and Majdalani, 2007].



Finally, we note that the azimuthal velocity approaches the Rankine solid-body azimuthal velocity for
large C; and small C;, Cs, etc.

: 3 5 7
. fim [vo(r)=Cr - Cr* +C* = Cr".] = Cpr. (15)
C3,C5,C7..50

This explains why the “solid body” Rankine vortex served as a bound for Chepura’s work. On the other
hand, the Lamb-Oseen-like sine limit is approached when

C -,
3
G, —>n—,
3!
c " (16)
> oSy
7
C —>n—,
7!

Thus, this sheds light as to why the vortices in Figure 1 have a “sine-like” form.

When the limits in Equations 15 and 16 are applied to the series forms found in Table 3, it is noted that
all the vortices collapse to the Rankine vortex bound on the one hand, and on the other extreme, all the
vortices collapse to a Lamb-Oseen-like sine bound.

VI. Conclusion
Steps were taken towards establishing that 15 single-cell, axisymmetric, Newtonian vortices share seven
mathematical characteristics, and are therefore essentially diverse manifestations of a single vortex family
that unites them. If so, then it is likely that a given mathematical analysis afforded to a particular vortex
also applies to the others.
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