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Spectral	
  Element	
  Method	
  and	
  Stabiliza(on	
  
SEM	
  	
  
•  Con(nuous	
  Galerkin	
  finite	
  element	
  method	
  with	
  diagonal	
  mass	
  matrix	
  and	
  

Gauss	
  quadrature	
  =>	
  highly	
  scalable	
  
•  Mime(c	
  proper(es	
  
•  Requires	
  stabiliza(on	
  =>	
  hyperviscosity	
  with	
  a	
  coefficient,	
  C(∆x)4∆2

Hyper-­‐viscosity	
  coefficient	
  

∆x ∆x

∆y

∆x? ∆y???



CAM-­‐SE	
  
Both	
  dynamics	
  and	
  tracer	
  advec(on	
  use	
  	
  
ver(cal	
  Lagrangian	
  remap	
  =>	
  2D	
  only	
  
	
  
Scalability,	
  mime(c	
  proper(es	
  
	
  
Stabiliza(on	
  needed	
  for	
  both	
  damping	
  of	
  2dx	
  wave	
  	
  
and	
  modeling	
  enstrophy	
  cascade	
  
	
  



Why	
  variable	
  meshes	
  for	
  climate	
  community	
  
Goals:	
  resolve	
  fine	
  scales	
  with	
  not-­‐so-­‐high	
  cost	
  to	
  calibrate	
  parametriza(ons,	
  
developing	
  parametriza(ons,	
  forecast,	
  etc.	
  
Example:	
  Variable	
  resolu(on	
  runs	
  are	
  10-­‐100	
  (mes	
  faster,	
  hundreds	
  of	
  runs	
  are	
  
needed.	
  For	
  the	
  	
  mesh	
  below,	
  approximately	
  46	
  (mes	
  less	
  DOFs.	
  

	
   	
   	
   	
  Mesh	
  refined	
  8	
  (mes,	
  from	
  333	
  km	
  to	
  42	
  km	
  
	
  

(a)	
  orthographic	
   (b)	
  stereographic	
  



Hyper-­‐viscosity	
  (HV)	
  
Stabiliza(on	
  technique	
  for	
  tracers	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  for	
  vector	
  fields	
  	
  
Coefficient	
  	
  	
  	
  	
  	
  	
  	
  scales	
  like	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  or	
  	
  	
  	
  
	
  
Works	
  well.	
  Problem	
  is	
  highly-­‐distorted	
  elements	
  with	
  uneven	
  scales.	
  
	
  
In	
  CAM-­‐SE,	
  HV	
  is	
  implemented	
  by	
  
	
  
	
  
	
  
We	
  focus	
  on	
  a	
  local	
  part:	
  
	
  
	
  

ν∆2�uν∆2q
ν (∆x)−p p = 4 p = 3.2
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sphere
φiqt =
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sphere
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sphere
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element
∇φi · ∇q



Elements	
  in	
  Physical	
  and	
  Reference	
  Spaces	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  

x(ξ, η), y(ξ, η)

D =





∂x
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∂y
∂ξ

∂x
∂η

∂y
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
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Transform:	
  

ξ, η ∈ [−1, 1]× [−1, 1]

�

element
∇xyφi · ∇xyq

=

�

[−1,1]×[−1,1]
D−T∇ξηφi ·D−T∇ξηq

=

�

[−1,1]×[−1,1]
∇ξηφi ·D−1D−T∇ξηq



Dimensions	
  from	
  Metric	
  Tensors	
  
Focus	
  on	
  an	
  inverse	
  metric	
  tensor	
  

D−1D−T = (DTD)−1 = EΛET

∆x, ∆y are	
  interpreted	
  as	
  dimensions	
  of	
  an	
  element	
  

EΛET = E
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Tensor	
  hyper-­‐viscosity:	
  
Instead	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  take	
  ∇ξη φi ·D−1D−T∇ξη q

∇ξη φi ·D−1VD−T∇ξη q

V = DE
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Tensor	
  hyper-­‐viscosity,	
  mo(va(on	
  
	
  
	
  
	
  
	
  

∇ξη φi · E
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In	
  case	
  of	
  uniform	
  elements,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  leads	
  to	
  (∆x)p∆q

For	
  distorted	
  elements,	
  

Technicali(es:	
  we	
  project	
  all	
  4	
  elements	
  of	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
It	
  is	
  well-­‐defined	
  across	
  elements’	
  edges.	
  

V



CFL,	
  matrix	
  E	
  
CFL	
  es(mates	
  follow	
  from	
  1D	
  analysis.	
  
	
  
Columns	
  of	
  matrices	
  E	
  as	
  vectors:	
  ‘uniform’	
  quad	
  on	
  a	
  sphere,	
  blue	
  segments	
  
represent	
  covariant	
  bases,	
  red	
  segments	
  represent	
  columns	
  of	
  matrix	
  E.	
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Shallow	
  Water	
  Tests	
  
Tests	
  as	
  in	
  Williamson	
  et	
  al.	
  (JCP,	
  1992)	
  
	
  
Test	
  Case	
  #2:	
  Global	
  steady	
  state	
  nonlinear	
  zonal	
  geostrophic	
  flow.	
  
	
  
Convergence	
  rates	
  for	
  a	
  numerical	
  scheme	
  are	
  expected	
  to	
  be	
  same	
  as	
  in	
  theory.	
  
	
  
	
  
plots	
  
Test	
  Case	
  #5:	
  Zonal	
  flow	
  over	
  a	
  mountain	
  
	
  
Analy(c	
  solu(on	
  does	
  not	
  exist.	
  Errors	
  are	
  obtained	
  with	
  a	
  hi-­‐res	
  solu(on.	
  	
  
The	
  mountain	
  is	
  given	
  by	
  C0	
  func(on.	
  Theore(cal	
  convergence	
  rates	
  are	
  not	
  
expected;	
  vor(city	
  field	
  is	
  examined	
  for	
  oscilla(ons.	
  
	
  



Meshes	
  
	
  
	
  
	
  

Coarse	
  resolu(on	
  333	
  km	
  

Coarse	
  resolu(on	
  167	
  km	
  

Coarse	
  resolu(on	
  111	
  km	
  

Goal	
  is	
  to	
  show	
  that	
  refined	
  meshes	
  
do	
  ‘no	
  harm’	
  compared	
  to	
  	
  
uniform	
  meshes	
  of	
  	
  
the	
  same	
  coarse	
  resolu&on	
  



Convergence	
  for	
  TC2	
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Uniform resolution, tensor HV
4th order slope
Refined x2
Refined x4
Refined x8
Uniform resolution, constant HV
Uniform resolution, no viscosity

l2
	
  e
rr
or
	
  

~degrees	
  of	
  freedom	
  

Tensor	
  HV,	
  uniform	
  resolu(on:	
  
	
  	
  	
  4th	
  order	
  
	
  
Refinement	
  with	
  x2:	
  
	
  	
  	
  3.7th	
  order	
  
	
  
Refinement	
  with	
  x4:	
  
	
  	
  	
  3.7th	
  order	
  
	
  
Refinement	
  with	
  x8:	
  
	
  	
  	
  3.7th	
  order	
  
	
  
Constant	
  (tradi(onal)	
  HV:	
  
	
  	
  	
  3.9th	
  order	
  
	
  
No	
  hyperviscosity:	
  
	
  	
  	
  3.9th	
  order	
  
	
  



Performance	
  of	
  TC5	
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Uniform resolution, tensor HV
3rd order slope
Refinement x2
Refinement x4
Refinement x8
Uniform resolution, onstant HV
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~degrees	
  of	
  freedom	
  

Note	
  that	
  refined	
  regions	
  
are	
  over	
  the	
  mountain	
  
which	
  improves	
  errors	
  	
  	
  	
  



Performance	
  of	
  TC5	
  (cont.)	
  
	
  
	
  
	
  

§ Refinement	
  over	
  mountain	
  has	
  almost	
  zero	
  impact	
  on	
  error	
  
§  Local	
  refinement	
  simula(ons	
  have	
  slightly	
  smaller	
  error	
  –	
  probably	
  due	
  to	
  
differences	
  in	
  hyperviscosity	
  operator	
  not	
  mesh	
  refinement	
  (tensor	
  vs.	
  const.	
  coeff)	
  

Uniform	
  Mesh	
  	
   k=2	
  	
  	
  	
  2x	
  local	
  refinement	
  	
  

k=4	
  	
  4x	
  local	
  refinement	
  	
   K=8	
  	
  	
  	
  	
  8x	
  local	
  refinement	
  	
  



Things	
  To	
  Do	
  
	
  
	
   V

CUBIT	
  refined	
  mesh	
  

Refinement	
  ‘by	
  hand’	
  

Tensor	
  	
  	
  	
  	
  	
  	
  	
  smoothness	
  
Is	
  important	
  
	
  
Quality	
  of	
  meshes	
  	
  
(less	
  nodal	
  valence,	
  
smoothness)	
  will	
  improve	
  
results	
  further	
  


