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Time-critical applications

m real-time applications
m structural health monitoring
m embedded control
® many-query applications
m design optimization
® uncertainty quantification

inputs u — ’ high-fidelity model ‘ — outputs y

barrier: simulation can take days on supercomputers

model reduction

inputs p — ‘ reduced-order model ‘ — outputs y

m offline (expensive): 'training’ analyses
m online (cheap): deploy low-dimensional model
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Main idea

m high-fidelity model
m parameterized simple mechanical system
® nonlinear potential energy
m Rayleigh damping
m external force
m existing reduced-order models

preserve structure, but remain expensive
K destroy structure, but are cheap

m our proposed reduced-order model
m preserves structure and is cheap
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Outline

Motivation
Problem formulation

Existing model-reduction techniques
B preserves structure, but expensive
m cheap, but destroys structure

3 Proposed method

E Numerical example
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Outline

Problem formulation
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Lagrangian description of structural dynamics

m equations of motion from finite-element discretization

M ()G + C(1)g+ VgV (qip) = £ (tin).

m can be derived via Lagrangian dynamics with five
‘ingredients’:
configuration space @ = RV
A Riemannian metric g(v, w; u) = v M (u)w
potential-energy function V/(gq; 1)
B dissipation function F (g, ;1) = 247 C (1)g
H external force derived from the Lagrange—D’Alembert principle
fext (t; H)
m properties 1-3 define a simple mechanical system

m properties 4-5 characterize non-conservative forces
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Equations of motion: derived from five ingredients

m configuration space: g € @ = RN

m kinetic energy: T(g; 1) = 38(9, 4 1) = 347 M (1)g
m Lagrangian:

L(g. q:p) = T(g:p) — V(g )
= 24T M ()~ V(g ).

m non-conservative forces
F(t.q,qpu)=F""(t;n) — VoF (g 1)

apply forced Euler—Lagrange equations

—V4l(q. 4 p) = Vql(q, q:p) = F(t.q,q: )

M ()G + C (1) + VgV (qip) = £ (t; )
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Key properties

m conservative mechanical systems (F = 0)
B energy conservation
B momentum conservation
m dynamics satisfy variational principle
m symplectic time-evolution maps
m structure-preserving time integration
[Marsden and West, 2001, Hairer et al., 2006]
m discrete system preserves some of the above properties
m leads to improved long-time behavior

reduced-order models should preserve these properties
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Outline

Existing model-reduction techniques
m preserves structure, but expensive
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Galerkin: structure-preserving model reduction [Lali et al., 2003]

m determine low-dimensional basis ® € RVxm
® modal decomposition, proper orthogonal decomposition
m substitute g = Pg, to obtain ‘reduced ingredients’
configuration space Q, = R™ with Q, = {®q, | ¢, € Q,}
H Riemannian metric g,(v,, w,; 1) = g(dv,, dw,; u)
potential-energy function V,(q,; u) = V(®gq,; 1)
@A dissipation function F,(q,; 1) = F(Pg,; i)
B external force £t = @ Tfext

m forced Euler—Lagrange equations yield
OTM ()06, +07 C (1)0G,+S TV, V(Pg,; p) = &7 (t; )

+ preserves Lagrangian structure

- remains expensive for parameterized, nonlinear systems
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Computational bottleneck

OTM (n)dG, + T C(1)®dr + STV V(Pgri ) = OTF(t; 1)

m when p changes, must recompute ®" M (u)® and &7 C (u)d
m O(Nm?) operations: scales with large dimension N

OTM(p)0

m when g, changes, must recompute ¢TVq V(®g,; 1)
m O(Nm) operations
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Outline

Existing model-reduction techniques

m cheap, but destroys structure
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CO||Ocation [Astrid et al., 2008, Ryckelynck, 2005]

OTM ()06, + T C (1)0Gr + DTV V(Pgr; p) = T (15 1)

m compute subset of equations before performing Galerkin
projection
®TZTZM (u)®G, + ®TZTZC (p)®g, + T ZTZV 4V (0qri )
=oTZTZF (t; ) .

‘sampling matrix’ Z: nz < N rows of identity matrix

m destroyed properties:
2. mass matrix not symmetric: does not define a metric
3. stiffness matrix not symmetric: does not derive from a
potential-energy function
4. dissipation matrix not symmetric: does not derive from a
dissipation function
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Empirical interpolation /least-squares approximation

[Grepl et al., 2007, Nguyen and Peraire, 2008, Chaturantabut et al., 2010, Carlberg et al., 2011]

OTM (1)®d, + D7 C ()b, + 7 = oTFet (¢ )

m interpolate functions before performing Galerkin projection

OTh () + O B(drip) + 7 = OTF (¢ 1)

f= &¢[Z®f] " Zf: least-squares approximation of f

m destroyed properties:
2. mass matrix not symmetric: does not define a metric
3. stiffness matrix not symmetric: does not derive from a
potential-energy function
4. dissipation matrix not symmetric: does not derive from a
dissipation function
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Existing complexity-reduction methods

reduced
Lagrangian ingredients

apply
Euler—Lagrange
equations

l

[ reduced-order

approximated
reduced-order

equations of motion ) .
equations of motion

+ leads to N-independent cost

- destroys Lagrangian structure
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Outline

3 Proposed method
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Proposed complexity-reduction method

reduced approximated reduced
Lagrangian ingredients Lagrangian ingredients

apply apply
Euler—Lagrange Euler—Lagrange
equations equations

| !

[ reduced-order approximated

. : reduced-order
equations of motion . .
equations of motion

+ leads to N-independent cost

+ preserves Lagrangian structure
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Efficient, structure-preserving model reduction

m directly approximate reduced Lagrangian ingredients

configuration space Q, = R™ with Q, = {®q, | ¢, € Q,}
Riemannian metric g, =~ g,

potential-energy function V, ~ V,

@A dissipation function F, ~ F,

H external force £ ~ £oXt
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Approximated reduced Lagrangian ingredients

configuration space Q, = R™ with Q, = {®q, | ¢, € Q/}
Riemannian metric g, ~ g,

potential-energy function \7, ~V,

A dissipation function F, =~ F,

H external force £t ~ Xt
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External-force approximation £

least-squares approximation of external force
'f.'—ext — ch [Zq)f]+ Zfext ~ fext

apply Lagrange—D’Alembert principle to Fext with variations in
reduced configuration space:

?ext — (DT?ext — ¢T¢f [Z¢f]+ ZfeXt

r

Offline (expensive)
collect snapshots of the external force and compute basis ®¢
determine sampling matrix Z
compute small-scale matrix A= &7 d; [Zd] "

Online (cheap)

compute a few entries of the external force Zfxt
compute small-scale product A[Zf]
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Approximated reduced Lagrangian ingredients

configuration space Q, = R™ with Q, = {®q, | ¢, € Q/}
Riemannian metric g, ~ g,

potential-energy function \7, ~V,

A dissipation function F, ~ F,

B external force £t ~ fXt
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Riemannian-metric and dissipation-function approximations

gr(ve wript) = VrT [CDTM(N)(D} W
Fr (qr; ,U,) = CirT [(DTC(/L)(D} Cir
m approximated quadratic ingredients:

gr(Vry Wy, /_L) - VrTMr ('LL)Wr
Fo (drip) = 6.7 G (1)
m relies on approximating low-dimensional matrices

i (1) ~ [ @7 M (1)9] >0

C (1) ~ [‘DTC(M)ﬂ >0

Efficient, structure-preserving model reduction K. Carlberg, R. Tuminaro, P. Boggs

22 /35



Mass-matrix approximation (similar for C)

m Offline (expensive)

collect matrix snapshots {M;} and corresponding {® ™ M;d}
determine ‘sample entries’

m Online (cheap)

compute only sample entries of M (1)
H solve cheap optimization problem for «;:

u
L L]
minimize — 07 — Qo
aq,00 m N n B m =
" u = | " |
M(pt) M M, F

subject to a1 ®TMy® + ar®T Mod > 0

set M, (1) = ;" M;®
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Approximated reduced Lagrangian ingredients

configuration space Q, = R™ with Q, = {®q, | ¢, € Q/}
Riemannian metric g, ~ g,

potential-energy function V.~ V,

A dissipation function F, =~ F,

B external force £t ~ fXt
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Potential-energy function approximation

Vi(qr; ) = V(®qr; 1)

m replace ® with a sparse matrix W (nz < N nonzero rows)

Vi(ari 1) =V (Var; p).

m cost reduction
BV Vi(qrip) =TV, V(Pq,; i) incurs O(Nm) flops
m YV, Vi(qip) = WTV,V(Vq,; 1) incurs O(nzm) flops
m compute W by matching W'V,V(V¥q,; 1) and
®TV,V(Pg,; p) for ‘training’ values of g, and p
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Potential-energy function approximation

m Offline (expensive)

collect snapshots of Vg, V;(g,; ) for ‘training’ values of q,, 1

H determine nonzero rows of W
solve optimization problem

J
mini&nizeZIH\UTVqV(Wq,j;u) TV V(Pg; Hz
=

= Online (cheap): replace V, with V,
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Outline

B Numerical example
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Simple example: conservative clamped-free truss

M(1)q +VqV (q:p) =0
V. potential energy, high-order nonlinearity in q
density p =1+ 111
bar cross-sectional area A =1+ o
modulus of elasticity E =1 4 u3
pie[-1,1,i=1,..,6
120 dofs in ‘high-fidelity’ model
m time integrator: implicit midpoint rule (symplectic)
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Reduced-order models

Galerkin projection
-+ preserves structure
- expensive
A Galerkin projection + collocation
- destroys structure
+ cheap
Galerkin projection + gappy POD approximation of residual
- destroys structure
+ cheap
[ proposed method
+ preserves structure
+ cheap

m reduced-order-model parameters

sample indices ny = 30
®r € RVXmr: POD, mg = m =10
train at 3 configurations, test at a new configuration
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1.
= high-fidelity nodel
(O training-tirm
—— Galerkin
—— Galerkin + IS rdcon.
0.5 1 —— structure-preserv n§
ation

-9 fl—— Galerkin + cpllo
oL
0.5F

tip displacement d

) 2

\

15 5 0 15 20 25
time ¢
Galerkin Galerkln. + | Galerkin + | proposed
collocation | LS recon. method
error 6.85% 18.7% 690% 7.0%
speedup 0.41 1.77 2.06 1.82
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Conclusions

m directly approximate reduced Lagrangian ingredients

+ Lagrangian-structure preservation

+ computational efficiency
m only reduced-order model delivering accuracy and speedup!
m future work

m deploy on more realistic (larger, more highly nonlinear) problem
m apply framework to preserve structure for other systems
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