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Goal: Peridynamic Navier equation

I Use nonlocal vector calculus to show that

L := −D
(15

m
µ$
(
D∗
)T )−Dω((λ− 13

3
µ)Tr

(
D∗ω
)
I
)

where m(x) =
∫
R3 |ξ|2$(x, ξ) dξ converges to

N := µ∇ · ∇u + µ∇∇ · u + λ∇∇ · u

as the nonlocality vanishes
I Integral operator L valid on functions with jump

discontinuities in contrast to the differential operator N
I Volume constraints are the nonlocal analogue of boundary

conditions
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Peridynamic Navier problem has a unique solution
I Dirichlet volume-constrained equilibrium equation{

−Lu = b on Ω

u = 0 on ΩI

I Dirichlet volume-constrained Navier equation
utt (x, t)− Lu(x, t) = b(x, t) ∀ (x, t) ∈ Ω× (0,T )

u(x,0) = u0 ∀ x ∈ Ω

ut (x,0) = v0 ∀ x ∈ Ω

u(x, t) = 0 ∀ (x, t) ∈ ΩI × (0,T )

I Develop a variational formulation and demonstrate that the
variational problem is well-posed

I Basis for a finite element method; appropriate numerical
solutions are converging to the solution
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Kinematics

I The extension state

e〈x′ − x〉 = |Y〈x′ − x〉| − |x′ − x|

represents the change in the length of a bond x′ − x due to
I deformation where

Y〈x′ − x〉 = y(x′)− y(x) ∀x′

= u(x′) + x′ −
(
u(x) + x

)
∀x′

is the “deformation state” about x
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Linearized kinematics

I Suppose u(x′)− u(x) is small (relative to the horizon, or
extent of nonlocal interactions)

I Linearize the extension state with respect to u(x′)− u(x)

e〈x′ − x〉
|x′ − x|

=
(
u(x′)− u(x)

)
· x′ − x
|x′ − x|2

+ R
(
|u(x′)− u(x)|
|x′ − x|

)
and if we assume that the displacement u is differentiable

=
x′ − x
|x′ − x|

· E x′ − x
|x′ − x|

+ o
(
|u(x′)− u(x)|
|x′ − x|

)
I E = 1

2

(
∇u(x) +∇T u(x)

)
is the symmetric strain tensor
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Energy density

Let ξ := x′ − x denote a bond; strain energy density function for
an elastic constitutively linear anisotropic peridynamic
heterogenous solid

W (e) :=
κ

2
ϑ2 +

η

2

∫
R3
$(x, ξ)

(
e〈ξ〉 − ϑ(x)

|ξ|
3

)2

dξ,

κ = κ(x), µ = µ(x) are the bulk, shear moduli, and

η(x)→ 15
m(x)

µ(x) (nonlocal shear)

ϑ(x) =
3

m(x)

∫
R3
|ξ|$(x, ξ) e〈ξ〉dξ (nonlocal dilatation)

m(x) =

∫
R3
|ξ|2$(x, ξ) dξ (second moment)
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Influence function $

I Influence function $ is a weighting function
I Select the horizon, or extent of the nonlocal interactions, to

be the region over which $ is nonzero (think of a ball)
I If $(x, ξ) = $(|ξ|) then we have an isotropic body
I Ultimately, $ determines the amount of smoothing

associated with the peridynamic Navier operator (how
many derivatives the displacement field gains over the
force field)

I For example, m(x) =
∫
R3 |ξ|2$(x, ξ) dξ may be finite even

if $(x, ξ) is not integrable, e.g.,

$(x, ξ) ∼ 1
|ξ|3+2s =

1
|x′ − x|3+2s 0 < s < 1
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Quadratic energy density

I Let ξ := x′ − x denote a bond; strain-energy density

W (e) :=
κ

2
ϑ2 +

η

2

∫
R3
$(x, ξ)

(
e〈ξ〉 − ϑ(x)

|ξ|
3

)2

dξ,

I Linearize strain-energy density (Silling J Elast 2010)
I A quadratic energy approximation occurs when the

extension state e and nonlocal dilatation ϑ are replaced by
their linearizations with respect to u(x′)− u(x) grants

W̃ (u) =
κ

2
(
Tr(D∗ωu)

)2
+
η

2

∫
R3
$(x, ξ)

(
Tr(D∗u)−Tr(D∗ωu)

|ξ|
3

)2

dξ
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Nonlocal vector calculus

I Nonlocal analogue of the relation div∗ = −grad
I Nonlocal divergence of a tensor Ψ

D(Ψ)(x) =

∫
R3

(
Ψ(x,x′) + Ψ(x′,x)

)
·α(x,x′) dx′

Special choice of Ψ(x,x′) = ω(x,x′)U(x) leads to

Dω
(
U
)
(x) := D

(
ω(x,x′)U(x)

)
(x)

I Adjoint of the nonlocal divergence of a vector function v

D∗(v)(x,x′) = −
(
v(x′)− v(x)

)
⊗α(x,x′)

D∗ω
(
v
)
(x) =

∫
R3
D∗(v)(x,x′)ω(x,x′) dx′
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Interaction region ΩI

Ω

ΩI

Ω

Ω Ω
ΩI

ΩI

ΩI

I Four of the possible configurations for ΩI , the nonlocal
analogue of the boundary ∂Ω

I ΩI is (typically) the union of spheres about x ∈ Ω;
peridynamic horizon δx is the radius of each sphere
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Potential energy

I Potential energy given a body force density b(x) is given by

E(u; b,g) =

∫
Ω∪ΩI

W̃ (u) dx−
∫

Ω
u · b dx

I Displacement u can be characterized as the solution of the
constrained optimization problem

min
u∈U0(Ω∪ΩI)

E(u; b,g) subject to u = 0 for x ∈ ΩI ,

where U0(Ω ∪ ΩI) is the peridynamic strain energy space
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Euler-Lagrange equations

I A tedious calculation shows

d
dε

E(u + εv; b,g)

∣∣∣∣
ε=0

=

∫
Ω∪ΩI

D
(
η$(D∗u)T ) · v dx

+

∫
Ω∪ΩI

Dω
(
σTr(D∗ωu)I

)
· v dx

−
∫

Ω
b · v dx ∀v ∈ U0(Ω ∪ ΩI)

I This gives the peridynamic Navier operator

−L := D
(
η$
(
D∗
)T )

+Dω
(
σTr
(
D∗ω
)
I
)
, σ = κ− ηm

9
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Isotropic peridynamic material

I If η
15

∫
Bε(0) |x|

2$(|x|) dx→ µ as ε→ 0 where $(|x′ − x|) is
positive on Bε(0), the sphere of radius ε centered at the
origin, then

Lu→ µ∇ · ∇u + (µ+ λ)∇∇ · u in H−1(R3) as ε→ 0

I Take home message: L is the peridynamic analogue of
the Navier operator
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Peridynamic Navier operator
The idea of the proof is to establish

D
(
η$
(
D∗
)T )→ −µ∇ · ∇u− µ∇∇ · u

Dω
(
σTr
(
D∗ω
)
I
)
→ −λ∇∇ · u

Both these facts use results about the various components
established in

Du, Gunzburger, Lehoucq, Zhou, A nonlocal vector calculus,
nonlocal volume-constrained problems, and nonlocal balance
laws Mathematical Models and Methods in Applied Sciences

(M3AS), Volume 23, pp. 493-540, 2013,
DOI:10.1142/S0218202512500546
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Peridynamic Navier problem

I −L := D
(
η$
(
D∗
)T )

+Dω
(
σTr
(
D∗ω
)
I
)
, σ = κ− ηm

9
I Dirichlet volume-constrained equilibrium equation{

−Lu = b on Ω

u = 0 on ΩI

I Dirichlet volume-constrained Navier equation
utt (x, t)− Lu(x, t) = b(x, t) ∀ (x, t) ∈ Ω× (0,T )

u(x,0) = u0 ∀ x ∈ Ω

ut (x,0) = v0 ∀ x ∈ Ω

u(x, t) = 0 ∀ (x, t) ∈ ΩI × (0,T )
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Variational problem

Given b ∈ U∗0(Ω ∪ ΩI) and u = 0 on ΩI : Find the displacement
u ∈ U0(Ω ∪ ΩI) such that

B(u,v) = F (v) ∀v ∈ U0(Ω ∪ ΩI),

where the internal and external works are given by

B(u,v) =

∫
Ω∪ΩI

∫
Ω∪ΩI

η$Tr(D∗u)Tr(D∗v) dx′dx

+

∫
Ω∪ΩI

σTr(D∗ωu)Tr(D∗ωv) dx

F (v) =

∫
Ω

b · v dx
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Internal work

I Peridynamic internal work

B(u,v) =

∫
Ω∪ΩI

∫
Ω∪ΩI

η$Tr(D∗u)Tr(D∗v) dx′dx

+

∫
Ω∪ΩI

σTr(D∗ωu)Tr(D∗ωv) dx

→
∫

Ω
µ∇u : ∇v dx +

∫
Ω

(µ+ λ)(∇ · u) (∇ · v) dx

I When the constraint u,v = 0 on ΩI is imposed (the
Dirichlet volume-constraint), then the internal work is
positive

I Remove the Dirichlet volume constraint and there are six
rigid displacements u(x) = Sx + c, S = −ST ;
B(Sx + c,v) = B(u,Sx + c) = 0
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Well-posed problem

Theorem: The variational problem: Given b ∈ U∗0(Ω ∪ ΩI) and
u = 0 on ΩI : Find u ∈ U(Ω ∪ ΩI) such that

B(u,v) = F (v) ∀v ∈ U0(Ω ∪ ΩI),

is well-posed and the peridynamic energy space is the same as
the space of square integrable functions, i.e.
U0(Ω ∪ ΩI) ≡ L2(Ω ∪ ΩI)
Proof: Use the Lax-Milgram theorem.
See Du, Gunzburger, Lehoucq, Zhou, Analysis of the
volume-constrained peridynamic Navier equation of linear
elasticity, Journal of Elasticity, Online First, 2012,
DOI:10.1007/s10659-012-9418-x
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Smoothing of the peridynamic Navier operator

I Classical Navier equation renders the displacement field
two more derivatives smoother than the force field

I Because we assumed that the square of the influence
function is integrable, the peridynamic Navier equation
renders the displacement field no smoother than the force
field—is this at odds with elastic behavior?

I Peridynamic Navier equation can render the displacement
field up to 2s, 0 < s < 1 derivatives smoother than the
force field but the influence function must be singular and
non-integrable

I Non-integrable influence functions are a challenge to the
so called particle discretization; replace with linear
elements (or some other appropriate choice) discontinuous
across elements
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Volume-constraints and boundary conditions

I The space of square integrable functions allows jump
discontinuous functions and so boundary conditions are
ill-defined

I Using a non-integrable influence function where the degree
of singularity is 0 < s < 1

2 renders a function space with
jump discontinuities

I Using a non-integrable influence function where the degree
of singularity is 1

2 < s < 1 renders a function space
without jump discontinuities—but then the role of
peridynamic mechanics is not clear
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