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Uncertainty Quantification for 
Complex Coupled Systems

• Address some of the mathematical and computational challenges in 
predictive simulation of complex coupled systems such as…

www.zimfamilycockers.com/DiabloCanyon.html



Challenges for UQ of Complex 
Coupled Systems

• Predictive simulation must capture critical couplings
• Coupling physics often necessitates reduction in model fidelity
• Reducing fidelity introduces additional uncertainty (component & interface)
• Strong coupling adds new dimensions of uncertainty to all components
• Cost of uncertainty quantification grows dramatically with stochastic dimension

Argonne Advanced Burner 
Reactor Preconceptual Design



Coupled Nonlinear Systems

• Shared-domain multi-physics coupling

– Equations coupled at each point in domain

• Interfacial multi-physics coupling

– Equations are coupled through boundaries

• Network coupling

– Equations are coupled through a set of scalars



Finite Dimensional Coupled Network Systems

• Network system after discretization:

• Variety of solution methods

– Successive substitution (Picard, Gauss-Seidel)

– Newton’s method (Full, inexact, JFNK)

– Nonlinear elimination:



Polynomial Chaos Uncertainty 
Propagation Framework

• Steady-state spatially finite-dimensional stochastic problem:

• Polynomial chaos approximation:

• Orthogonal polynomial basis of total order at most N:

• Intrusive stochastic Galerkin (SG):

• Non-intrusive polynomial chaos (NIPC)/spectral projection (NISP):



Stochastic Coupled Network Systems

• Introduce random variables:

• Introduce polynomial chaos approximation for all variables:

• Stochastic Galerkin network equations:

• Results in SG analog of deterministic network system

– Allows similar nonlinear elimination approach



Curse of Dimensionality

• At each iteration of the nonlinear elimination method, we will have 
approximations to the coefficients

• Task is to then evaluate the coefficients

• where

• Requires solving sub-problems of larger stochastic dimensionality, e.g., 



The Key is Measure Transformation

• Use coupling terms to define new random variables

• Must generate orthogonal polynomials & quadrature rules for new joint measure
– Components are dependent
– We don’t have the joint measure

• What we can compute is expectation through transformation of measure

• Looked at several ways to leverage this for multi-physics
– Single coupling variable:  Lanczos
– Multiple coupling variables Gram-Schmidt QR + linear programming



Constructing a Reduced Basis

•

•

• Define 

• Compute weighted QR factorization (e.g., MGS):

• Z defines our new basis



Constructing a Reduced Quadrature

• Goal:  Find a new set of weights              with as many as zero as possible

• Requirement:  Quadrature rule must integrate products of basis functions 
exactly:

• Define

• A is rank deficient, find a full rank set of columns via column-pivoted QR

• Compute new weights by solving

• Really just need a feasible point via simplex method



Putting the Pieces Together

• Define

• Compute

• Then 

• Solve for weights using any suitable linear program solver, e.g., Clp

• Similar procedure for derivatives needed by nonlinear elimination method



Simple Composite Function Example

Tensor-product Gauss-Legendre quadrature, QR tolerance = 10-12

N P + 1 Q + 1 P + 1 R ĥ (10) − ĥ (N )
∞ ĥ (10) − h̃ (N )

∞ vec(I − Z T U Z ) ∞

1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 22 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 47 2.94E-05 2.94E-05 1.37E-12
5 126 1296 21 101 2.09E-06 2.09E-06 1.83E-12
6 210 2401 28 188 1.30E-07 1.30E-07 2.55E-12
7 330 4096 36 346 7.18E-09 7.18E-09 3.81E-12
8 495 6561 45 587 3.58E-10 3.57E-10 6.10E-12
9 715 10000 55 941 1.62E-11 1.63E-11 2.62E-12
10 1001 14641 66 1425 0.00E+00 1.63E-12 2.70E-12

N P + 1 Q + 1 P + 1 R ĥ (10) − ĥ (N )
∞ ĥ (10) − h̃ (N )

∞ vec(I − Z T U Z ) ∞

1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 22 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 35 2.94E-05 2.94E-05 1.90E-11
5 126 1296 21 50 2.09E-06 1.83E-06 2.28E-06
6 210 2401 28 70 1.30E-07 1.22E-07 4.02E-08
7 330 4096 36 92 7.18E-09 4.24E-07 1.11E-06
8 495 6561 45 158 3.58E-10 4.23E-06 1.12E-03
9 715 10000 55 252 1.62E-11 3.86E-06 4.87E-06
10 1001 14641 66 475 0.00E+00 1.30E-05 3.85E-02

QR tolerance = 10-6



Application to Network-Coupled PDE Problem

• Incompressible fluid flow/heat transfer in a coupled 
pipe-reactor with temperature source



Discrete 2x2 Network Coupled System

• PDEs discretized via 1st order, stabilized FEM
– SUPG, PSPG stabilization
– Pipe:  40x4 cells, reactor 40x40 cells

• Pipe thermal diffusivity uncertain random field with exponential covariance
– Discretized with KL-expansion in s terms

• 2x2 network coupled system
– Neumann-to-Dirichlet maps



Stochastic Network System

• Outer network system
– Stokhos instrusive stochastic Galerkin package (part of Trilinos)
– Standard Newton iteration
– GMRES linear solver, approximate Gauss-Seidel stochastic preconditioner, LU factorization of mean matrix

• Inner PDE solves
– Non-intrusive polynomial chaos at supplied quadrature points (tensor-product Gauss-Legendre)
– Standard Newton iteration for each sample
– GMRES linear solver, incomplete ILU preconditioner
– Distributed memory parallelism (MPI), 8 processors

Coefficient of variation = 0.5, s = 3 random variables

Mean Std. Dev.

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Performance

Time(sec) Reduced Time(sec)

s P + 1 Q + 1 P + 1 R Pipe Reactor Total Pipe Reactor Total

2 10 16 10 16 4 62 67 4 53 58
3 20 64 10 40 17 246 263 17 120 137
4 35 256 10 41 82 1052 1134 73 129 202
5 56 1024 10 35 353 4051 4405 341 116 458



Concluding Remarks

• UQ problems for multi-physics systems quickly become intractable
– Adding more components/physics increases stochastic dimensionality in all components

• Ideas studied here help mitigate this
– UQ cost in each sub-problem approximately constant

• Building method on tensor-product quadrature limits scalability

• Ideas extend to sparse grids, but with challenges
– Non-positive weights lead to non-positive-definite inner product
– Can be mitigated by formulating basis reduction on PC coefficients instead of quadrature 

values
• Inner products become standard dot-products on PC coefficients

– Modify reduced quadrature linear program by removing positivity constraint
– Requires sparse grid to preserve discrete orthogonality

• Fine for Gaussian abscissas with linear growth, but not anything else 

• So far only investigated “segregated solve” type methods
– Can this be incorporated into full Newton or JFNK methods?

• Probably, nonlinear elimination is just a nonlinear Schur complement
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Auxiliary Slides



• Steady-state stochastic problem (for simplicity):

• Stochastic Galerkin method (Ghanem and many, many others…):

– Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos)

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:

– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:

– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently, particularly for nonlinear problems

Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods



Stokhos:  Trilinos tools for embedded 
stochastic Galerkin UQ methods

• Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, Omar 
Knio

• Tools for describing SG discretization
– Stochastic bases, quadrature rules, etc…

• C++ operator overloading library for automatically evaluating SG 
residuals and Jacobians

– Replace low-level scalar type with orthogonal polynomial expansions
– Leverages Trilinos Sacado automatic differentiation library

• Tools forming and solving SG linear systems
– SG matrix operators
– Stochastic preconditioners
– Hooks to Trilinos parallel solvers and preconditioners

• Provides tools for investigating embedded UQ methods in large-
scale applications

http://trilinos.sandia.gov 

http://trilinos.sandia.gov

