

Stochastic Dimension Reduction of Multiphysics Systems through Measure Transformation

Eric Phipps (etphipp@sandia.gov),
John Red-Horse, Tim Wildey
Sandia National Laboratories,

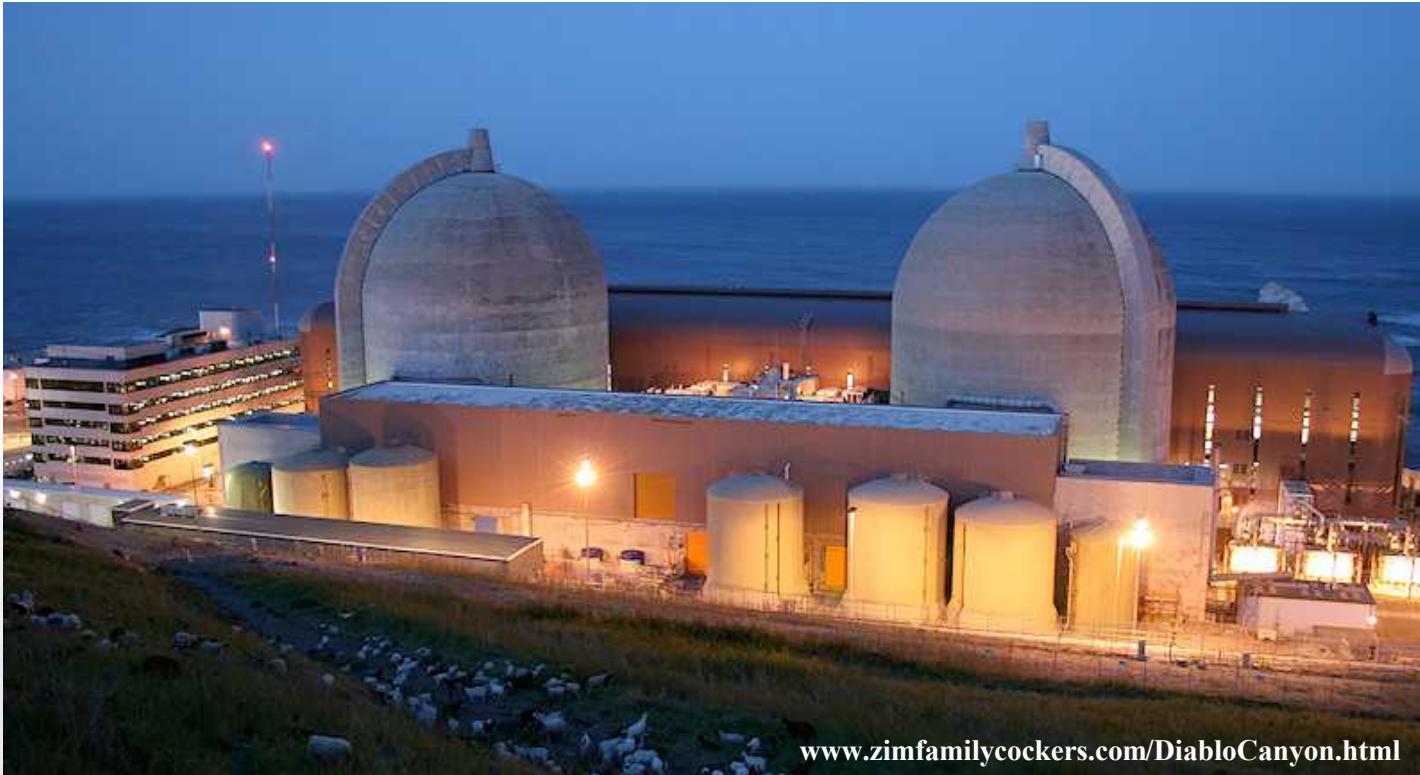
Paul Constantine – Stanford University,
Roger Ghanem – University of Southern California, and
Maarten Arnst – University of Liège, Belgium

**SIAM Conference on Computational Science and
Engineering
Feb. 25-Mar. 1, 2013**

SAND 2013-xxxx C

Uncertainty Quantification for Complex Coupled Systems

- Address *some* of the mathematical and computational challenges in predictive simulation of complex coupled systems such as...



www.zimfamilycockers.com/DiabloCanyon.html

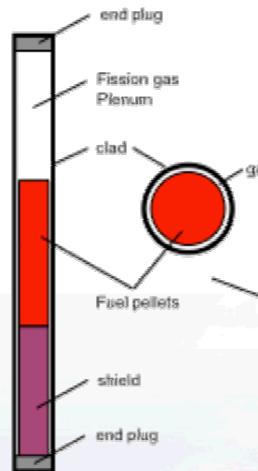
Sandia National Laboratories

Challenges for UQ of Complex Coupled Systems

Structures and physics whose features are too small for resolution on 3D grid

Fuel-pins and control rods

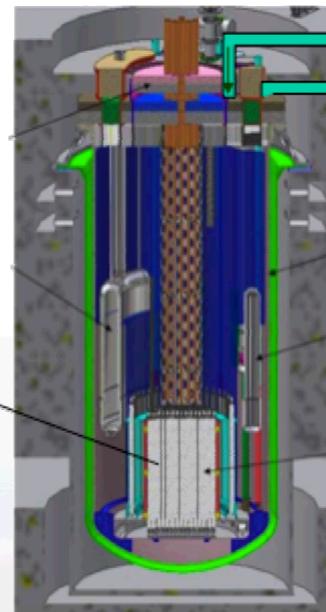
- 0.5 - 10 mm-scale features
- conduction, fission heating ...
- 2D or 3D representative models



"Meso-scale" resolved by 3D grid

In-vessel Reactor Components

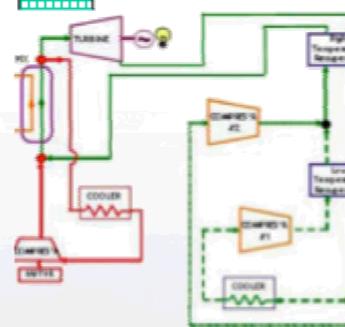
- 10 cm to 10 m scale geometry
- Neutronics, Turb flow & heat transfer, thermal-mechanics, conduction, ...
- 3D Modeling Framework



Balance of Plant Reactor System Components (& Containment)

- 1 - 50 m scale
- Pipes, pumps, valves, heat exchangers, turbines, rooms,
- 0D MELCOR models
- 3D Fire Modeling with RIO

Structures and physics whose features are too large for resolution on 3D grid



Argonne Advanced Burner Reactor Preconceptual Design

- Predictive simulation must capture critical couplings
- Coupling physics often necessitates reduction in model **fidelity**
- Reducing fidelity introduces additional uncertainty (component & interface)
- Strong coupling adds new dimensions of uncertainty to all components
- Cost of uncertainty quantification grows dramatically with **stochastic dimension**

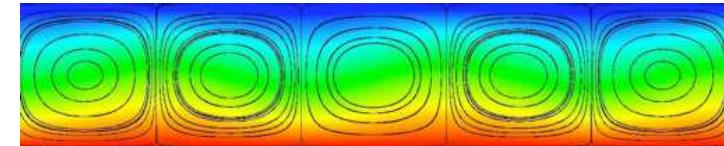
Sandia National Laboratories

Coupled Nonlinear Systems

- Shared-domain multi-physics coupling
 - Equations coupled at each point in domain

$$\mathcal{L}_1(u_1(x), u_2(x)) = 0$$

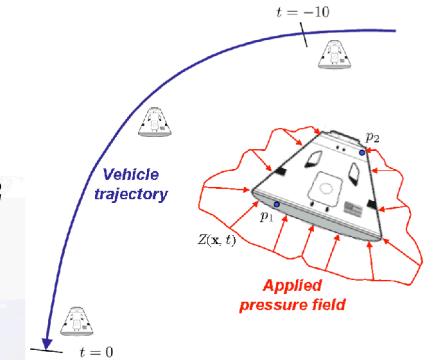
$$\mathcal{L}_2(u_1(x), u_2(x)) = 0$$



- Interfacial multi-physics coupling
 - Equations are coupled through boundaries

$$\mathcal{L}_1(u_1(x), v_2(x_2)) = 0, \quad v_2(x_2) = \mathcal{G}_2(u_2(x_2)), \quad x_2 \in \Gamma_2$$

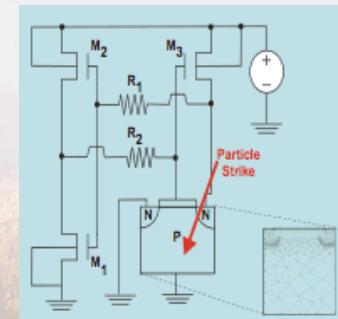
$$\mathcal{L}_2(v_1(x_1), u_2(x)) = 0, \quad v_1(x_1) = \mathcal{G}_1(u_1(x_1)), \quad x_1 \in \Gamma_1$$



- Network coupling
 - Equations are coupled through a set of scalars

$$\mathcal{L}_1(u_1(x), v_2) = 0, \quad v_2 = \mathcal{G}_2(u_2)$$

$$\mathcal{L}_2(v_1, u_2(x)) = 0, \quad v_1 = \mathcal{G}_1(u_1)$$



Finite Dimensional Coupled Network Systems

- Network system after discretization:

$$f_1(u_1, v_2) = 0, \quad u_1 \in \mathbb{R}^{n_1}, \quad v_2 = g_2(u_2) \in \mathbb{R}^{m_2}, \quad f_1 : \mathbb{R}^{n_1+m_2} \rightarrow \mathbb{R}^{n_1}$$

$$f_2(v_1, u_2) = 0, \quad u_2 \in \mathbb{R}^{n_2}, \quad v_1 = g_1(u_1) \in \mathbb{R}^{m_1}, \quad f_2 : \mathbb{R}^{m_1+n_2} \rightarrow \mathbb{R}^{n_2}$$

$$1 \sim m_1, m_2 \ll n_1, n_2$$

- Variety of solution methods

- Successive substitution (Picard, Gauss-Seidel)
- Newton's method (Full, inexact, JFNK)
- Nonlinear elimination:

$$v_1 - g_1(u_1(v_2)) = 0 \text{ s.t. } f_1(u_1, v_2) = 0$$

$$v_2 - g_2(u_2(v_1)) = 0 \text{ s.t. } f_2(v_1, u_2) = 0$$

$$\begin{bmatrix} 1 & -dg_1/dv_2 \\ -dg_2/dv_1 & 1 \end{bmatrix} \begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix} = - \begin{bmatrix} v_1 - g_1(u_1(v_1)) \\ v_2 - g_2(u_2(v_2)) \end{bmatrix}$$

$$\frac{dg_1}{dv_2} = -\frac{\partial g_1}{\partial u_1} \left(\frac{\partial f_1}{\partial u_1} \right)^{-1} \frac{\partial f_1}{\partial v_2}, \quad \frac{dg_2}{dv_1} = -\frac{\partial g_2}{\partial u_2} \left(\frac{\partial f_2}{\partial u_2} \right)^{-1} \frac{\partial f_2}{\partial v_1}$$

Polynomial Chaos Uncertainty Propagation Framework

- Steady-state spatially finite-dimensional stochastic problem:

Find $u(\xi)$ such that $f(u, \xi) = 0$ a.e., $\xi : \Omega \rightarrow \Gamma \subset \mathbb{R}^s$, density ρ

- Polynomial chaos approximation:

$$Z = \text{span}\{\Psi_i : i = 0, \dots, P\} \subset L^2_\rho(\Gamma) \rightarrow u(\xi) \approx \hat{u}(\xi) = \sum_{i=0}^P u_i \Psi_i(\xi)$$

- Orthogonal polynomial basis of total order at most N :

$$\langle \Psi_i \Psi_j \rangle \equiv \int_{\Gamma} \Psi_i(x) \Psi_j(x) \rho(x) dx = \delta_{ij}, \quad i, j = 0, \dots, P, \quad P + 1 = \binom{N + s}{s}$$

- Intrusive stochastic Galerkin (SG):

$$0 = F_i(u_0, \dots, u_P) = \langle f(\hat{u}(\xi), \xi) \Psi_i(\xi) \rangle = \int_{\Gamma} f(\hat{u}(x), x) \Psi_i(x) \rho(x) dx = 0, \quad i = 0, \dots, P$$

- Non-intrusive polynomial chaos (NIPC)/spectral projection (NISP):

$$u_i = \langle u(\xi) \Psi_i(\xi) \rangle \approx \sum_{k=0}^Q w_k u_k \Psi_i(x_k), \quad f(u_k, x_k) = 0, \quad i = 0, \dots, P, \quad k = 0, \dots, Q$$

Stochastic Coupled Network Systems

- Introduce random variables: $\xi = (\xi_1, \xi_2)$, $|\xi_1| = s_1$, $|\xi_2| = s_2$, $|\xi| = s = s_1 + s_2$

$$h_1(v_1, v_2, \xi) = v_1(\xi) - g_1(u_1(v_2(\xi)), \xi_1) = 0 \quad s.t. \quad f_1(u_1(\xi), v_2(\xi), \xi_1) = 0$$

$$h_2(v_1, v_2, \xi) = v_2(\xi) - g_2(u_2(v_1(\xi)), \xi_2) = 0 \quad s.t. \quad f_2(v_1(\xi), u_2(\xi), \xi_2) = 0$$

- Introduce polynomial chaos approximation for all variables:

$$\hat{u}_i(\xi) = \sum_{j=0}^P u_{i,j} \Psi_j(\xi), \quad \hat{v}_i(\xi) = \sum_{j=0}^P v_{i,j} \Psi_j(\xi)$$

- Stochastic Galerkin network equations:

$$\begin{cases} \langle f_1(\hat{u}_1(\xi), \hat{v}_2(\xi), \xi_1) \Psi_i(\xi) \rangle = 0 \\ \langle f_2(\hat{v}_1(\xi), \hat{u}_2(\xi), \xi_2) \Psi_i(\xi) \rangle = 0 \end{cases}, \quad i = 0, \dots, P$$

$$\begin{cases} H_{1,i} \equiv \langle h_1(\hat{v}_1(\xi), \hat{v}_2(\xi), \xi) \Psi_i(\xi) \rangle = 0 \\ H_{2,i} \equiv \langle h_2(\hat{v}_1(\xi), \hat{v}_2(\xi), \xi) \Psi_i(\xi) \rangle = 0 \end{cases}, \quad i = 0, \dots, P$$

$$u_{i,j} = \sum_{k=0}^Q w_k u_i^k \Psi_j(\xi^k) \quad s.t. \quad \begin{cases} f_1(u_1^k, \hat{v}_2(\xi^k), \xi_1^k) = 0 \\ f_2(\hat{v}_1(\xi^k), u_2^k, \xi_2^k) = 0 \end{cases}, \quad k = 0, \dots, Q$$

- Results in SG analog of deterministic network system
 - Allows similar nonlinear elimination approach

Curse of Dimensionality

- At each iteration of the nonlinear elimination method, we will have approximations to the coefficients

$$\hat{v}_1(\xi) = \sum_{k=0}^P v_{1,k} \Psi_k(\xi), \quad \hat{v}_2(\xi) = \sum_{k=0}^P v_{2,k} \Psi_k(\xi)$$

- Task is to then evaluate the coefficients

$$\hat{g}_1(\xi) = \sum_{k=0}^P g_{1,k} \Psi_k(\xi), \quad \hat{g}_2(\xi) = \sum_{k=0}^P g_{2,k} \Psi_k(\xi)$$

- where

$$g_1 = g_1(u_1(v_2(\xi)), \xi_1), \quad g_2 = g_2(u_2(v_1(\xi)), \xi_2)$$

- Requires solving sub-problems of larger stochastic dimensionality, e.g.,

Solve $f_1(u_1^k, \hat{v}_2(\xi^k), \xi_1^k) = 0$ for $\{u_1^k\}$ given $\{v_2^k\}$, $k = 0, \dots, Q$

The Key is Measure Transformation

- Use coupling terms to define new random variables

$$\hat{u}_1(\xi_1, \xi_2) = \sum_{k=0}^P u_{1,k} \Psi_k(\xi_1, \xi_2) \longrightarrow \tilde{u}_1(\eta) = \sum_{k=0}^{P'_1} \tilde{u}_{1,k} \Phi_k(\eta), \quad \eta = (\hat{v}_2(\xi_1, \xi_2), \xi_1)$$

- Must generate orthogonal polynomials & quadrature rules for new joint measure
 - Components are dependent
 - We don't have the joint measure
- What we can compute is expectation through transformation of measure

$$\int f(\eta) d\eta = \int f(\eta(\xi)) d\xi \approx \sum_{k=0}^Q w_k f(\eta(\xi^k)) = \sum_{k=0}^Q w_k f(\eta^k)$$

- Looked at several ways to leverage this for multi-physics
 - Single coupling variable: Lanczos
 - Multiple coupling variables Gram-Schmidt QR + linear programming

Constructing a Reduced Basis

- Given PCE $\hat{v}(\xi) = \sum_{k=0}^P v_k \Psi_k(\xi)$, quadrature rule $\{(w^j, \xi^j) : j = 0, \dots, Q\}$ and mapping $h = h(v)$, $|v| = m < s$,
- Construct $\hat{h}(\xi) = \sum_{k=0}^P h_k \Psi_k(\xi) \approx \sum_{k=0}^{P'} \tilde{h}_k \Phi_k(\eta(\xi))$, $\eta(\xi) = \hat{v}(\xi)$, $P' = \binom{N' + m}{m}$
- Define

$$\mathcal{L} = \{(l_1, \dots, l_m) \in \mathbb{N}^m : l_1 + \dots + l_m \leq N'\}, \quad |\mathcal{L}| = P' + 1$$

$V \in \mathbb{R}^{(Q+1) \times (P'+1)}$, $V_{jl} = \hat{v}_1^{l_1}(\xi^j) \cdots \hat{v}_m^{l_m}(\xi^j)$, $W = \text{diag}(\{w^k\}) \in \mathbb{R}^{(Q+1) \times (Q+1)}$

- Compute weighted QR factorization (e.g., MGS):
$$V = ZB \quad \text{s.t.} \quad Z^T W Z = I, \quad Z \in \mathbb{R}^{(Q+1) \times (P'+1)}$$
$$Z_{jk} = \Phi_k(\hat{v}(\xi^j))$$
- Z defines our new basis

Constructing a Reduced Quadrature

- Goal: Find a new set of weights $\{u^j\}_{j=0}^Q$ with as many as zero as possible
- Requirement: Quadrature rule must integrate products of basis functions exactly:

$$\sum_{j=0}^Q \Phi_{k_1}(\hat{v}(\xi^j)) \Phi_{k_2}(\hat{v}(\xi^j)) u^j = \sum_{j=0}^Q Z_{jk_1} Z_{jk_2} u_j = \delta_{k_1 k_2}$$

- Define

$$A \in \mathbb{R}^{(Q+1) \times (P'+1)^2} \text{ s.t. } A_{jk} = Z_{jk_1} Z_{jk_2}, \quad k = (k_1, k_2)$$

- A is rank deficient, find a full rank set of columns via column-pivoted QR

$$A\Pi = YS, \quad Y^T W Y = I, \quad \text{Find largest } R \text{ such that } |S(R, R)| > \text{TOL}$$

- Compute new weights by solving

$$\begin{array}{ll} \min_u & 0^T u \\ \text{s.t.} & Y_R^T u = Y_R^T w, \\ & u \geq 0 \end{array}$$

- Really just need a feasible point via simplex method

Putting the Pieces Together

- Define

$$\mathcal{J} = \left\{ j \in \{0, \dots, Q\} : u_j \neq 0 \right\}, \quad |\mathcal{J}| = R$$

- Compute

$$\tilde{h}(\hat{v}(\xi)) = \sum_{k=0}^{P'} \tilde{h}_k \Phi_k(\hat{v}(\xi))$$

$$\tilde{h}_k = \sum_{j \in \mathcal{J}} u_j h(\hat{v}(\xi^j)) \Phi_k(\hat{v}(\xi^j)) = \sum_{j \in \mathcal{J}} u_j h(\hat{v}(\xi^j)) Z_{jk}, \quad k = 0, \dots, P'$$

- Then

$$h(\xi) = \sum_{k=0}^P h_k \Psi_k(\xi), \quad h_k = \sum_{j=0}^Q w_j \tilde{h}(\hat{v}(\xi^j)) \Psi_k(\xi^j), \quad k = 0, \dots, P$$

- Solve for weights using any suitable linear program solver, e.g., Clp
- Similar procedure for derivatives needed by nonlinear elimination method

Simple Composite Function Example

$$y_1(x) = x_1, \quad y_2(x) = \frac{1}{10 + \sum_{i=1}^4 \frac{x_i}{i}}, \quad h(y) = \exp(y_1 + y_2),$$

Tensor-product Gauss-Legendre quadrature, QR tolerance = 10^{-12}

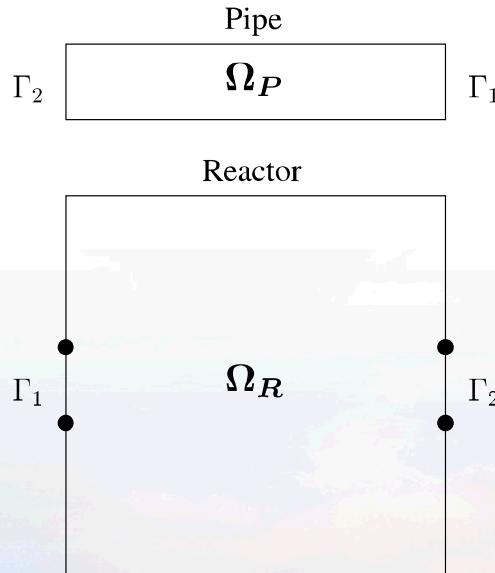
N	P + 1	Q + 1	P' + 1	R	$\ \hat{h}^{(10)} - \hat{h}^{(N)}\ _\infty$	$\ \hat{h}^{(10)} - \tilde{h}^{(N)}\ _\infty$	$\ \text{vec}(I - Z^T U Z)\ _\infty$
1	5	16	3	5	2.93E-02	2.93E-02	2.22E-16
2	15	81	6	12	3.58E-03	3.58E-03	2.10E-14
3	35	256	10	22	3.55E-04	3.55E-04	1.46E-12
4	70	625	15	47	2.94E-05	2.94E-05	1.37E-12
5	126	1296	21	101	2.09E-06	2.09E-06	1.83E-12
6	210	2401	28	188	1.30E-07	1.30E-07	2.55E-12
7	330	4096	36	346	7.18E-09	7.18E-09	3.81E-12
8	495	6561	45	587	3.58E-10	3.57E-10	6.10E-12
9	715	10000	55	941	1.62E-11	1.63E-11	2.62E-12
10	1001	14641	66	1425	0.00E+00	1.63E-12	2.70E-12

QR tolerance = 10^{-6}

N	P + 1	Q + 1	P' + 1	R	$\ \hat{h}^{(10)} - \hat{h}^{(N)}\ _\infty$	$\ \hat{h}^{(10)} - \tilde{h}^{(N)}\ _\infty$	$\ \text{vec}(I - Z^T U Z)\ _\infty$
1	5	16	3	5	2.93E-02	2.93E-02	2.22E-16
2	15	81	6	12	3.58E-03	3.58E-03	2.10E-14
3	35	256	10	22	3.55E-04	3.55E-04	1.46E-12
4	70	625	15	35	2.94E-05	2.94E-05	1.90E-11
5	126	1296	21	50	2.09E-06	1.83E-06	2.28E-06
6	210	2401	28	70	1.30E-07	1.22E-07	4.02E-08
7	330	4096	36	92	7.18E-09	4.24E-07	1.11E-06
8	495	6561	45	158	3.58E-10	4.23E-06	1.12E-03
9	715	10000	55	252	1.62E-11	3.86E-06	4.87E-06
10	1001	14641	66	475	0.00E+00	1.30E-05	3.85E-02

Application to Network-Coupled PDE Problem

- Incompressible fluid flow/heat transfer in a coupled pipe-reactor with temperature source



$$\left. \begin{array}{l} -\nu \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \beta(T - T_{\text{ref}})g \\ -\kappa \Delta T + \mathbf{u} \cdot \nabla T + T_s = 0 \end{array} \right\}, \quad x \in \Omega_P \cup \Omega_R,$$
$$\left. \begin{array}{l} \bar{T}_P = \bar{T}_R \\ \kappa \nabla \bar{T}_P \cdot \mathbf{n}_1 = \kappa \nabla \bar{T}_R \cdot \mathbf{n}_1 \end{array} \right\}, \quad x \in \Gamma_1,$$
$$\left. \begin{array}{l} \bar{T}_R = \bar{T}_P \\ \kappa \nabla \bar{T}_R \cdot \mathbf{n}_2 = \kappa \nabla \bar{T}_P \cdot \mathbf{n}_2 \end{array} \right\}, \quad x \in \Gamma_2.$$

Discrete 2x2 Network Coupled System

- PDEs discretized via 1st order, stabilized FEM
 - SUPG, PSPG stabilization
 - Pipe: 40x4 cells, reactor 40x40 cells
- Pipe thermal diffusivity uncertain random field with exponential covariance
 - Discretized with KL-expansion in s terms

$$Cov_{\kappa}(x, y, x', y') = \sigma \exp \left(-\frac{|x - x'|}{L_x} - \frac{|y - y'|}{L_y} \right)$$

$$\kappa(\xi) = \mu + \sum_{i=0}^s \kappa_i(x) \xi_i, \quad \xi_i = U(-1, 1).$$

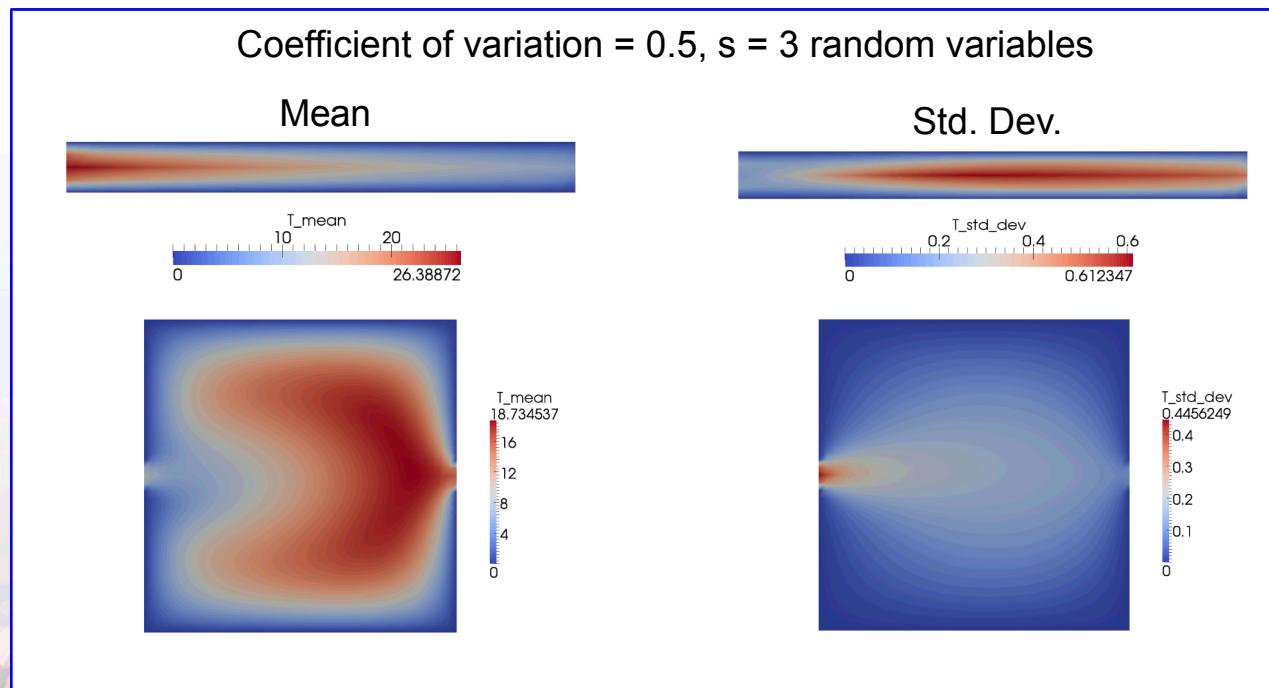
- 2x2 network coupled system
 - Neumann-to-Dirichlet maps

$$\begin{array}{ll} g_1(u_1) - g_2(u_2) = 0 & f_1(u_1, v_1, v_2, \xi) = 0 \\ g_3(u_2) - g_4(u_1) = 0 & f_2(u_2, v_1, v_2) = 0 \\ g_1(u_1) = \bar{T}_P|_{\Gamma_1}, \quad g_2(u_2) = \bar{T}_R|_{\Gamma_1} & s.t. \quad v_1 = \kappa \nabla \bar{T} \cdot n_1|_{\Gamma_1} \\ g_3(u_2) = \bar{T}_R|_{\Gamma_2}, \quad g_4(u_1) = \bar{T}_P|_{\Gamma_2} & v_2 = \kappa \nabla \bar{T} \cdot n_2|_{\Gamma_2} \end{array}$$

Stochastic Network System

- Outer network system
 - Stokhos intrusive stochastic Galerkin package (part of Trilinos)
 - Standard Newton iteration
 - GMRES linear solver, approximate Gauss-Seidel stochastic preconditioner, LU factorization of mean matrix
- Inner PDE solves
 - Non-intrusive polynomial chaos at supplied quadrature points (tensor-product Gauss-Legendre)
 - Standard Newton iteration for each sample
 - GMRES linear solver, incomplete ILU preconditioner
 - Distributed memory parallelism (MPI), 8 processors

<http://trilinos.sandia.gov>

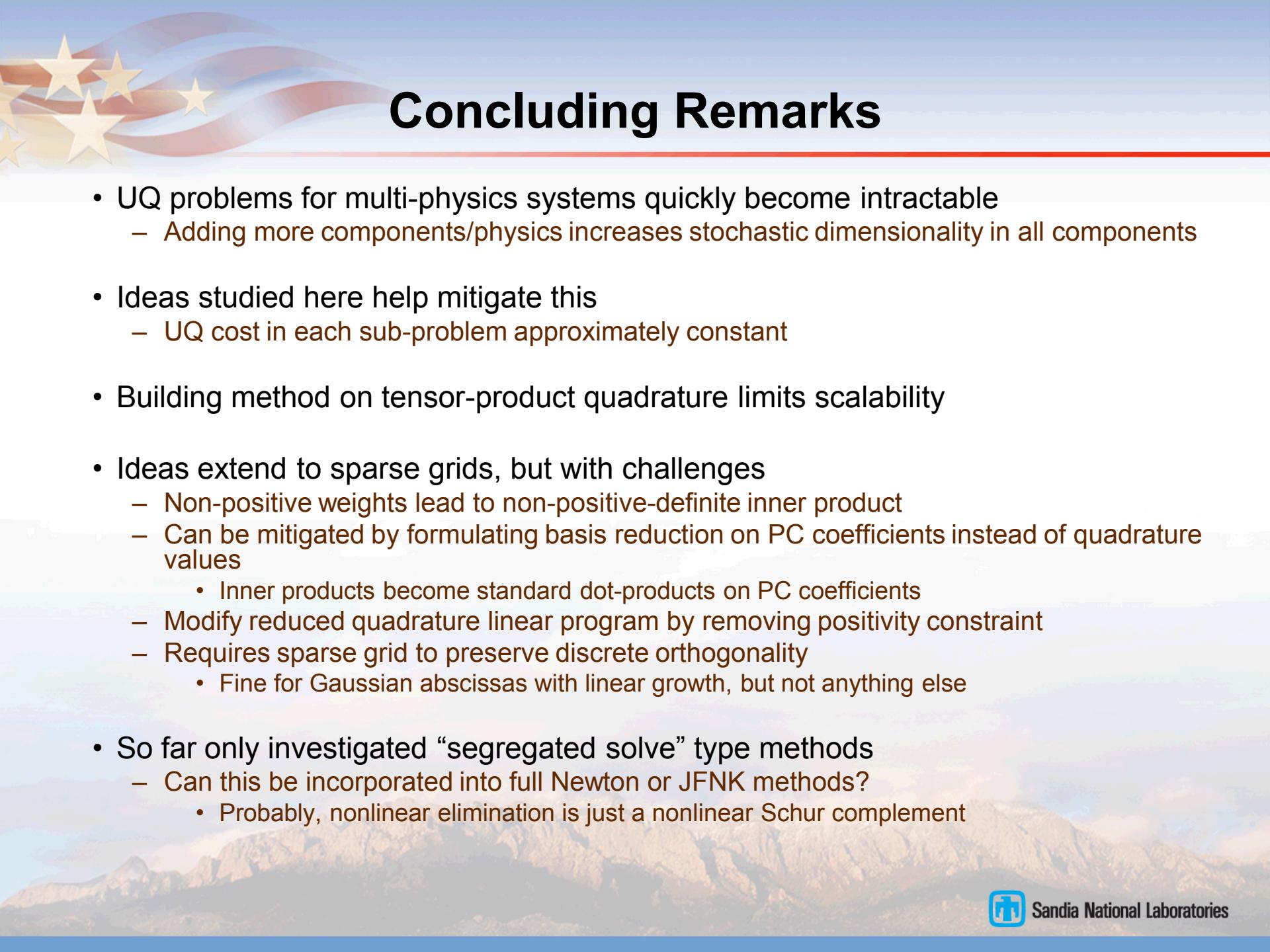


Sandia National Laboratories

Performance

s	P + 1	Q + 1	P' + 1	R	Time (sec)			Reduced Time(sec)		
					Pipe	Reactor	Total	Pipe	Reactor	Total
2	10	16	10	16	4	62	67	4	53	58
3	20	64	10	40	17	246	263	17	120	137
4	35	256	10	41	82	1052	1134	73	129	202
5	56	1024	10	35	353	4051	4405	341	116	458

Sandia National Laboratories



Concluding Remarks

- UQ problems for multi-physics systems quickly become intractable
 - Adding more components/physics increases stochastic dimensionality in all components
- Ideas studied here help mitigate this
 - UQ cost in each sub-problem approximately constant
- Building method on tensor-product quadrature limits scalability
- Ideas extend to sparse grids, but with challenges
 - Non-positive weights lead to non-positive-definite inner product
 - Can be mitigated by formulating basis reduction on PC coefficients instead of quadrature values
 - Inner products become standard dot-products on PC coefficients
 - Modify reduced quadrature linear program by removing positivity constraint
 - Requires sparse grid to preserve discrete orthogonality
 - Fine for Gaussian abscissas with linear growth, but not anything else
- So far only investigated “segregated solve” type methods
 - Can this be incorporated into full Newton or JFNK methods?
 - Probably, nonlinear elimination is just a nonlinear Schur complement

References

- P.G. Constantine and E.T. Phipps, “A Lanczos Method For Approximating Composite Functions,” *Applied Mathematics and Computation*, vol. 218 (24), 2012. [\[arXiv:1110.0058\]](https://arxiv.org/abs/1110.0058)
- M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse, “Dimension reduction in stochastic modeling of coupled problems,” *IJNME*, vol. 92 (11), 2012. [\[arXiv:1112.4761\]](https://arxiv.org/abs/1112.4761)
- M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse, “Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems,” *IJNME*, vol. 92, (12), 2012. [\[arXiv:1112.4772\]](https://arxiv.org/abs/1112.4772)
- M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse, “Reduced chaos expansions with random coefficients in reduced-dimensional stochastic modeling of coupled problems,” submitted to *IJNME*. [\[arXiv:1207.0910\]](https://arxiv.org/abs/1207.0910)
- P.G. Constantine ,E.T. Phipps, and T.M. Wildey, “Efficient uncertainty propagation for network multiphysics systems,” submitted to *IJNME*.

Auxiliary Slides

Sandia National Laboratories

Embedded Stochastic Galerkin UQ Methods

- Steady-state stochastic problem (for simplicity):

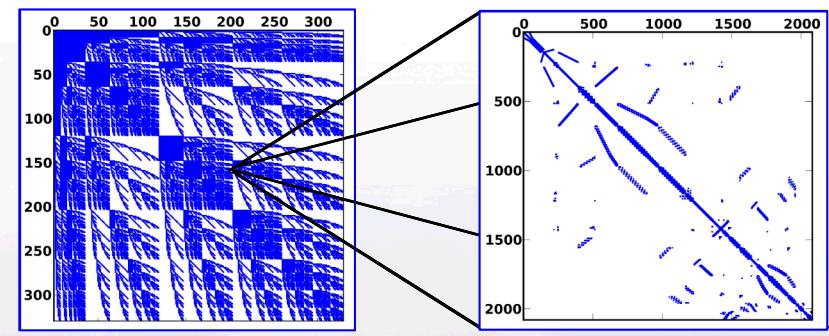
Find $u(\xi)$ such that $f(u, \xi) = 0$, $\xi : \Omega \rightarrow \Gamma \subset R^M$, density ρ

- Stochastic Galerkin method (Ghanem and many, many others...):

$$\hat{u}(\xi) = \sum_{i=0}^P u_i \psi_i(\xi) \rightarrow F_i(u_0, \dots, u_P) = \frac{1}{\langle \psi_i^2 \rangle} \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy = 0, \quad i = 0, \dots, P$$

- Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos)
- Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

$$0 = F(U) = \begin{bmatrix} F_0 \\ F_1 \\ \vdots \\ F_P \end{bmatrix}, \quad U = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_P \end{bmatrix} \quad \frac{\partial F}{\partial U} :$$



- Advantages:

- Many fewer stochastic degrees-of-freedom for comparable level of accuracy

- Challenges:

- Computing SG residual and Jacobian entries in large-scale, production simulation codes
- Solving resulting systems of equations efficiently, particularly for nonlinear problems

Sandia National Laboratories

Stokhos: Trilinos tools for embedded stochastic Galerkin UQ methods

- Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, Omar Knio
- Tools for describing SG discretization
 - Stochastic bases, quadrature rules, etc...
- C++ operator overloading library for automatically evaluating SG residuals and Jacobians
 - Replace low-level scalar type with orthogonal polynomial expansions
 - Leverages Trilinos Sacado automatic differentiation library

$$a = \sum_{i=0}^P a_i \psi_i, \quad b = \sum_{j=0}^P b_j \psi_j, \quad c = ab \approx \sum_{k=0}^P c_k \psi_k, \quad c_k = \sum_{i,j=0}^P a_i b_j \frac{\langle \psi_i \psi_j \psi_k \rangle}{\langle \psi_k^2 \rangle}$$

- Tools forming and solving SG linear systems
 - SG matrix operators
 - Stochastic preconditioners
 - Hooks to Trilinos parallel solvers and preconditioners
- Provides tools for investigating embedded UQ methods in large-scale applications

<http://trilinos.sandia.gov>

Sandia National Laboratories