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N Uncertainty Quantification for
Complex Coupled Systems

» Address some of the mathematical and computational challenges in

predictive simulation of complex coupled systems such as.
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- Challenges for UQ of Complex
Coupled Systems
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* Predictive simulation must capture critical couplings

» Coupling physics often necessitates reduction in model fidelity

» Reducing fidelity introduces additional uncertainty (component & interface)

« Strong coupling adds new dimensions of uncertainty to all components

* Cost of uncertainty quantification grows dramatically with stochastic dimension
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Coupled Nonlinear Systems

» Shared-domain multi-physics coupling
— Equations coupled at each point in domain
Li(ui(x),uz(x)) =0
Lo(uy(x),uz(x)) =0

* Interfacial multi-physics coupling
— Equations are coupled through boundaries
Li1(u1(z),v2(x2)) =0, wv2(x2) = G2(u2(x2)),
L2(v1(x1), u2(x)) =0, vi(x1) = G1(ua(z1)),

Network coupling
— Equations are coupled through a set of scalars
Li(u1(x),v2) =0, vz = Ga(u2)
Ez(’vl, ’U;z(CE)) = O, V1 = gl(ul)
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Finite Dimensional Coupled Network Systems

» Network system after discretization:

fi(ui,v2) =0, uy €R™, vy =ga(uz) € R™2, fy:R™T™2 5 R™
.f2(v17u2) - Oa Uz € an, V1 = gl(ul) € le, fz . le—l—nz — R"™2

1 ~mg,me < nyg,ng

« Variety of solution methods
— Successive substitution (Picard, Gauss-Seidel)
— Newton’s method (Full, inexact, JENK)

— Nonlinear elimination:
vy — g1(ur(v2)) =0 s.t. fi(ug,v2) =0
vz — gz2(u2(v1)) =0 s.t. fo(vi,uz) =0

[ 1 —dgy /dv2] [Am] _ ['vl £ gl(ul(’vl))]

—dgs/dvy 1 Avg v2 — g2(u2(v2))
B, o (00 Sl (51 0
d’U2 8’11,1 811,1 8’1)2, d’Ul a B’U,z 8’11,2 8’01
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Polynomial Chaos Uncertainty
Propagation Framework

Steady-state spatially finite-dimensional stochastic problem:

Find u(§) such that f(u,£) =0 a.e., £: Q@ — ' C R?, density p

Polynomial chaos approximation: b
Z =span{¥; :i=0,...,P} C L3(T) — u(§) = a(§) = ) us¥:(§)

Orthogonal polynomial basis of total order at most N: =0
(P, ¥;) = /F‘I’i(w)‘Ilj(w)p(w)dw =85, 4,7=0,...,P, P+1= (

Intrusive stochastic Galerkin (SG):

0 = Fi(uo,. .., up) = (F(A(€), &) Wi(£)) = / f (@), &) @i(x)p(z)de = 0, i =0, ..., P

N—I—s)

S

* Non-intrusive polynomial chaos (NIPC)/spectral projection (NISP):

Q

u; = (u(§)i(§)) = Z wpur¥Yi(Tk), f(uk, k) =0,2=0,...,P, k=0,...,Q
k=0
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Stochastic Coupled Network Systems

 Introduce random variables: & = (£1,&2), |&1| = s1, |&2| = s2, |€]| = s = s1 + s2

hi(vi,v2,8) = v1(€) — g1(ur(v2(€)),&1) =0 st fr(ui(§),v2(£),81) =0
ha(vi,v2,8) = v2(§) — g2(u2(v1(€)),42) =0 s.t.  fa(vi(€),u2(€),82) =0

* Introduce polynomial chaos approximation for all variables:

i (§) = Z u;;¥;(€), 0(§) = Z v;,; ¥; ()

» Stochastic Galerkin network equations:
<f1(ﬂ1(€)7'ﬁ2(€)7El)qlz(g)>

/ (£2(01(£), 42(£), €2) i (§))

0 :
e t=0,...,P

H,; = (hi(91(£),02(£),£)®:(§)) =0 as &
Hy,; = (h2(91(£), 02(£),£)¥i(£)) =0’
NQ - k k
— kEa . (¢k fl(u1,'02(£ ),51):0 a
Ui j = kz:%’wkui ‘I’J(£ ) s.t. fz(ﬁl(fk),ugagé:) —0 ’ k= 0, 50 .,Q

» Results in SG analog of deterministic network system
— Allows similar nonlinear elimination approach
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Curse of Dimensionality

* At each iteration of the nonlinear elimination method, we will have
approximations to the coefficients

91(8) = > v1pPr(€), 92(8) = D v2xPk(€)
k=0 k=0

* Task is to then evaluate the coefficients

91(6) = > g1 Pk(8), §2(8) =D 92,6 P(€)
* where w0 =
g1 = gl(ul(v2(€))7€1)a gz = 92(u2(vl(€))7£2)

* Requires solving sub-problems of larger stochastic dimensionality, e.g.,

Solve fi(u¥, 2(¢¥),€%) =0 for {u¥} given {vi}, k=0,...,Q
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The Key is Measure Transformation

» Use coupling terms to define new random variables

P Py
11(&1,82) = Z U1,k VPr(€1,82) — w1(n) = Z w1,k Pr(n), 1= (92(£1,82),&1)

k=0 k=0

* Must generate orthogonal polynomials & quadrature rules for new joint measure
— Components are dependent
— We don’t have the joint measure

« What we can compute is expectation through transformation of measure
Q Q
[ £an= [ 10€)de ~ 3" wif(n(€) = Y- wef ()

» Looked at several ways to leverage this for multi-physics
— Single coupling variable: Lanczos
— Multiple coupling variables Gram-Schmidt QR + linear programming
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Constructing a Reduced Basis

P
* Given PCE 9(¢) = ) vp®x(£), quadrature rule {(w’,&%) : j=0,...,Q}
k=0
and mapplng h = h(v), lv] = m < s,

* Construct h(€) = th<s>~ th%(n(é)), @ =s, =" ")

* Define
L={1y..eslm) EN™ : 1+ +1,, <N}, |L|=P +1

V € R@TDX(P'+1) Vi = ,U:lll (&%) - - *f;: (¢7), W = diag({w"*}) € R@T*(Q+1)

» Compute weighted QR factorization (e.g., MGS):
V =2B sit. ZTWZ =1, Z ¢ RQTUXEHD 1 7. — &, (5(£7))

» Z defines our new basis
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Constructing a Reduced Quadrature

» Goal: Find a new set of weights {uj}fzo with as many as zero as possible

« Requirement: Quadrature rule must integrate products of basis functions
exactly:

Q
Z Py, (ﬁ(&?)) Py, (’8(53)) u! = Z ijl Zj’<=2uj — 5’<¢1’<¢2
j =0

§=0

* Define o
A € RQTHUX(PHDT g4 A = Zin, Zjk,, k= (k1,k2)

» A is rank deficient, find a full rank set of columns via column-pivoted QR

AII=YS, Y'WY =1, Find largest R such that |S(R, R)| > TOL

« Compute new weights by solving

min 07w
u
s.t. Ygu = ng,
u>0

» Really just need a feasible point via simplex method
Sandia National Laboratories



Putting the Pieces Together

* Define
JZ{jE{O,...,Q} . uj;éO}, |T| =R

« Compute

h(B(8) = > he®r(d(£))
k=0

hie = > uih(8(&7))2r(8(&7) = > u;h(6(&))Zjn, k=0,..., P’

VASIVA jeJ

* Then

P Q
h(E) =D heWr(€), hi =) wih(8(¢9))Pk(¢?), k=0,...,P
k=0

i=0

» Solve for weights using any suitable linear program solver, e.g., Clp

« Similar procedure for derivatives needed by nonlinear elimination method

@
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Simple Composite Function Example

y1(x) = 1, y2(x) =

Tensor-product Gauss-Legendre quadrature, QR tolerance = 10-12

, h(y) = exp (y1 + y2),

N P+1 Q+1 P'+1 R |[h("-hMN) A= hN) |, [vec(l - ZTUZ)|-
1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 2 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 47 2.94E-05 2.94E-05 1.37E-12
5 126 1296 21 101 2.09E-06 2.09E-06 1.83E-12
6 210 2401 28 188 1.30E-07 1.30E-07 2.55E-12
7 330 409% 36 346 7.18E-09 7.18E-09 3.81E-12
8 495 6561 45 587 3.58E-10 3.57E-10 6.10E-12
9 715 10000 55 @ 941 1.62E-11 1.63E-11 2.62E-12
10 1001 14641 66 1425 0.00E+00 1.63E-12 2.70E-12
QR tolerance = 106
N P+1 Q+1 P'+1 R [[n"9-haMN)|, A0 -hMN)|. |ve(l -ZTUZ)|
1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 22 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 35 2.94E-05 2.94E-05 1.90E-11
5 126 129% 21 50 2.09E-06 1.83E-06 2.28E-06
6 210 2401 28 70 1.30E-07 1.22E-07 4.02E-08
7 330 40% 36 R 7.18E-09 4.24E-07 1.11E-06
8 495 6561 45 158 3.58E-10 4.23E-06 1.12E-03
9 715 10000 55 252 1.62E-11 3.86E-06 4.87E-06
10 1001 14641 66 475 0.00E+00 1.30E-05 3.85E-02
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Application to Network-Coupled PDE Problem

* Incompressible fluid flow/heat transfer in a coupled
pipe-reactor with temperature source

Pipe

" tr YA Vu+ Vp = B(T — Tiet)
—VvAu+u-Vu+ Vp = — 1ret)g
Reactor _ ’ CCESZPUKZRa
—kAT +~u - VT +T, =0
Tp =T
— P R— ) werl?
° ! kVTp-ny = kKVIR- -ny
Q _ _
Fl. R ‘Fz TR:TP e
kVTgr: nes = kVTp - noy ’ 2

Sandia National Laboratories



Discrete 2x2 Network Coupled System

« PDEs discretized via 1st order, stabilized FEM
— SUPG, PSPG stabilization
— Pipe: 40x4 cells, reactor 40x40 cells

* Pipe thermal diffusivity uncertain random field with exponential covariance
— Discretized with KL-expansion in s terms

lz —='| Iy—y'|>

Cov.(x,y, 2’ y') = ocex (—
w(Tyy, 2’ y) P I I,

K(€) =p+ ) k()& & =U(-1,1).

i=0
» 2x2 network coupled system
— Neumann-to-Dirichlet maps
g1(u1) — g2(u2) =0 fi(u1,v1,v2,€) =0
g3(u2) — ga(u1) =0 ) ity f2(uz, Ul,_vz) =0
g1(u1) = Tp|r,, g2(u2) = Tr|r, v1 = kVT - nqlr,
gs(uz2) = TR|an ga(uq) = TP|F2 vy = KVT - na|r,
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“Stochastic Network System

Outer network system

Stokhos instrusive stochastic Galerkin package (part of Trilinos)
Standard Newton iteration

GMRES linear solver, approximate Gauss-Seidel stochastic preconditioner, LU factorization of mean matrix

Inner PDE solves

Non-intrusive polynomial chaos at supplied quadrature points (tensor-product Gauss-Legendre)
Standard Newton iteration for each sample

GMRES linear solver, incomplete ILU preconditioner

Distributed memory parallelism (MPI), 8 processors

http://trilinos.sandia.gov

Coefficient of variation = 0.5, s = 3 random variables

T_mean
18.734537

16
“12
8

EA
0

Mean Std. Dev.

T_mean T_std_dev
SEETEETEEL CRRNRRNER. AT PRI < NP OO
0 26.38872 0 0.612347

T_std_dev
0.4456249

EO.A
03
0.2

Eo. 1
0
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Performance

Time (sec) Reduced Time(sec)
P+1 Q+1 P'+1 R Pipe Reactor Tota Pipe Reactor Total

AP WODN|O®

10 16 10 16 4 62 67 4 53 58

20 64 10 40 17 246 263 17 120 137
35 256 10 41 82 1052 1134 73 129 202
56 1024 10 35 353 4051 4405 341 116 458
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Concluding Remarks

UQ problems for multi-physics systems quickly become intractable

Adding more components/physics increases stochastic dimensionality in all components

|deas studied here help mitigate this

UQ cost in each sub-problem approximately constant

Building method on tensor-product quadrature limits scalability

|deas extend to sparse grids, but with challenges

Non-positive weights lead to non-positive-definite inner product

Can be mitigated by formulating basis reduction on PC coefficients instead of quadrature
values

* Inner products become standard dot-products on PC coefficients
Modify reduced quadrature linear program by removing positivity constraint
Requires sparse grid to preserve discrete orthogonality

* Fine for Gaussian abscissas with linear growth, but not anything else

So far only investigated “segregated solve” type methods

Can this be incorporated into full Newton or JFNK methods?
* Probably, nonlinear elimination is just a nonlinear Schur complement
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Embedded Stochastic Galerkin UQ Methods

« Steady-state stochastic problem (for simplicity):
Find u(¢) such that f(u,£) =0, ¢: Q2 — T C RM, density p

» Stochastic Galerkin method (Ghanem and many, many others...):

a(§) = Z u;ihi(§) = Fi(uo,...,up) = / f(a(y), y)vi(y)p(y)dy =0, ¢ =0,...,P

(¥7)

— Multivariate orthogonal basis of total order at most N — (generalized polynomial chaos)
« Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

00 50 100 150 200 250 300 00 500 1000 1500 2000
S S » NN
FO Uo 500 Y \<’ oo
F]' u 1 8—F L4 1000} F\"u ""’9’- .
O — F(U) = ’ U f— 8U o . N
1500, - o
Fp up R RO N
L = = = i & W 111 20001 ~ ™ N
- Advantages: Stochastic sparsity Spatial sparsity

— Many fewer stochastic degrees-of-freedom for comparable level of accuracy

« Challenges:
— Computing SG residual and Jacobian entries in large-scale, production simulation codes
— Solving resulting systems of equations efficiently, particularly for nonlinear problems
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Stokhos: Trilinos tools for embedded
stochastic Galerkin UQ methods

 Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, Omar
Knio

» Tools for describing SG discretization
— Stochastic bases, quadrature rules, etc...

http://trilinos.sandia.gov

« C++ operator overloading library for automatically evaluating SG
residuals and Jacobians
— Replace low-level scalar type with orthogonal polynomial expansions
— Leverages Trilinos Sacado automatic differentiation library

P P P P
a = Zai¢i, b= Z bjvj, c =ab= Z CrPrs Ck = Z a;b; (Wit ¥r)

2
1=0 j=0 k=0 4,j=0 <¢k>

» Tools forming and solving SG linear systems
— SG matrix operators
— Stochastic preconditioners
— Hooks to Trilinos parallel solvers and preconditioners

* Provides tools for investigating embedded UQ methods in large-
scale applications
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