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~~“Why generate random graphs?

* Enable sharing of surrogate data e LR P e MRS e 2
— Computer network traffic mELE Ehy 1% jFen iz,
— Social networks .
— Financial transactions = .5:....

e Statistical analysis

— Sample from a specified space
e Testing graph algorithms

— Scalability

— \Versatility (e.g., vary degree distributions)*

— Characterizing algorithm performance
* Insightinto...

— Generative process

— Community structure f E

— Comparison

— Evolution T s sesee s T T e e e T T e e e e e
Block Two-Level Erdds-Rényi (BTER) graph;

— Uncertainty image courtesy of Nurcan Durak.
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Markov Chains: common method @h
generate random graphs

For this talk, a Markov chain

is a graph whose nodes are

realizations of a graph.

Framework:

— Find an arbitrary node of an MC

— Take a loooong random walk

— You will arrive at a uniform random walk
* if certain conditions are satisfied.

Challenges

— Generating a graph with given properties

— Rewiring a graph to preserve desired features

— Patience
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- onvergence is a problem
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Can we find principled and
practical metrics for convergence?
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In theory, we need to prove
the stationary distribution of
the MC is uniform.

In practice, bounds for
convergence may be
impractical or nonexistent.

Practitioners use
unprincipled methods.
— e.g., 10,000 rewiring
operatiions
Interpretations of statistical
tools may be hard.
— What does Gelman Rubin test
mean from a graphs

perspective?
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Can we find principled and practical(® &,
metrics for convergence?
We propose: }
independent
O(N®) steps

edges

required for a
random
sample

 What is a mathematically sound definition of
random enough?

* Goals: practical, sound, and interpretable.

* An imperfect analogy:

— To solve Ax=b, we do not compute A1b, we compute
an x, that yields a small residual, Ax-b.

— We have done quite well living with this.

In our experience,
10| V| rewirings
were sufficient

Randomization
via bugs in the
code.
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Testing independence of edges

“ie -

a: probability that the edge will be inserted

|

B

o

I-p

T: transition matrix of the edge

B: probability that the edge will be deleted

* Assume the addition/deletion of an edge can be approximated

as a Markov process.
of smaller Markov chains.

convergence of the full MC.

The full Markov chain (MC) can be approximated as a collection

Convergence of smaller MCs is a necessary condition for



Sandia
National
Laboratories

Convergence of smaller Markov chains

e Eigenvalues of Tare 1 and 1 —(a+86).
— Eigenvalues form a basis, so initial state v can be
written as v=c,e,+c,e,.
— After N iterations, we have p=T"v=ce +c,(1-(a+p))"e,
— The second term decays and p converges to c,e,.

— This vector c,e, indicates the probability the edge
is present/absent in a random graph.

— For tolerance g, the number of iterations required,
N, is
N=In(l/¢)/(a.+P)
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Preserving the degree distributions

Actor
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A.-L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5349):509-512, 1999.

e (a
Step 1: Pick two edges
{ul,vl) and (u2, v2)
Uniformly random
@ &

N

| u2

Step 2: Swap edges

Degree distribution is like a
histogram of degrees.

It is one of the critical
features that distinguish real
graphs from arbitrary sparse
graphs.

Rewiring scheme has long
been used to perturb graphs
while preserving the degree
distribution.

— Converges in O(/E[°)-time.
Havel and Hakimi described
the first algorithm to

construct a graph with a
given degree distribution.
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Transition matrix for preserving degreeimos

distribution
a
@ 8 1 d,: degree of vertex u
m: total number of edges
a: probability that the edge will be inserted d d 1
B: probability that the edge will be deleted oa=—"=> pB=1-(- —)
2m m
N=In(l/¢)/(a+[) o0 +p=2
m
To generate a graph with independent edges m. 1

with a specified degree distribution we need szlng
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Joint Degree Distribution

* Joint Degree Distribution (JDD)
specifies the number of edges
between vertices of specified
degrees.

e JDD provides more information
abot a graph.

— The degree distribution is
implicitly defined by JDD.
* Work on JDD is more recent
and sparse.
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" Preserving JDD

¢ 14

Step 1: Pick an edge Step 2: Pick another edge Step 3: Swap edges
(uy,v), and pick one (u,w), such that d(u,)=d(u,)
of its vertices, e.g., u, or d(u,)=d(w)

* This Markov chain can be used to construct uniformly random instances of a graph with
a specified degree distribution.

* No theoretical bounds on convergence.

 Agraph with a specified (feasible) joint degree distribution can be constructed in linear
time.

e Stanton & P.,, ACM J. Experimental Algorithmics "



Transition matrix for preserving degr o
distribution

1-a m @ @
a
d,: degree of vertex u m: # edges
0 1
B f(d,): #vertices of degree d,

J(d,d,): #edges between d and d,
a: probability that the edge will be inserted

B: probability that the edge will be deleted B— L fd)-1, jd,)-1
m 2mf(d ) 2mf(d))
N=In(l/¢)/(a+p)

2J(d,,d,)
mf (d, )f(d) °°+ﬁ>—

o=

To generate a graph with independent edges N — mlnl
with a specified degree distribution we need €
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How much error can we tolerate?

/\ n * Preserving degree
distribution

* Errors correspond

A A K to 0.5, 2.5, 5, and
7.5|E]| iterations.
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How much error can we tolerate?

A

A

JAN

JAN

* Preserving JDD

* Errors
correspond to
1, 5,10, and
15| E|
Iiterations.
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Edges become independent rapid@mm
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Fraction of independent edges
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Fraction of indebendenf edges‘
o
(@)
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—=—C. Elegans —=—C. Elegans
0.2 —— Netscience 0.2" ——Netscience
| ——Power ——Power
0 ‘ ‘ ‘ ‘ 0 ‘ | ‘ ‘ ‘
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k/[E| k/|E|

* Many edges become independent quickly.

* Only a few remain after 7.5|E| and 15| E| iterations for
preserving DD and JDD, respectively.
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Some edges are tougher than others

Frequency

Preserving JDD on Soc-
Epinions

mﬂﬁnﬂ’

' — Edges are sampled
down to 10%.

After 30| E| iterations
90% of the edges
become independent.

There are a few

200 400 600
Normalized thinning factor k/|E]|

scoutliers.
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Density
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Sandia
National
Laboratories

Diminishing returns

0.1¢

N = 30|E|
—N = 150|E|
— N = 270|E|
—N = 390|E| -
10 15 20 25 3C
Diameter

25

N = 30|E|
—N = 150|E]|
—N = 270|E|
—N = 390|E|

1759 17595 176 176.05 176
Maximum eigenvalue

* Preserving JDD on soc-epinionsl
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Conclusions

Generating uniformly random instances of a graph with given properties is
a fundamental problem in graph analysis.

Markov chains are commonly used for this purpose, but
guaranteeing/testing their convergence is a challenge.

We proposed to use

— edge independence as a practical metric for convergence.

— Smaller Markov chains for presence/absence of edges as a guide.
We showed how the method applies to DD and JDD preserving MCs.
Empirical studies on several graphs validated the approach.

We are not guaranteeing convergence of the chain, but providing a metric
that quantifies what is satisfied.
— Results should be interpreted accordingly.

The same approach can be used to guarantee independence of a bigger
structures.
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Relevant Publications

* Generating a random graph

— J. Ray, A. Pinar, and C. Sehadhri, Are we there yet? When to stop a Markov chain
while generating random graphs,” PROC. WAW 12. .

— 1. Stanton and A. Pinar, “Constructing and uniform sampling graphs with
prescribed joint degree distribution using Markov Chains,” ACM JEA.

— |. Stanton and A. Pinar, “Sampling graphs with prescribed joint degree
distribution using Markov Chains,” ALENEX'11.



