

The Inherent Community Structure in Real-World Graphs

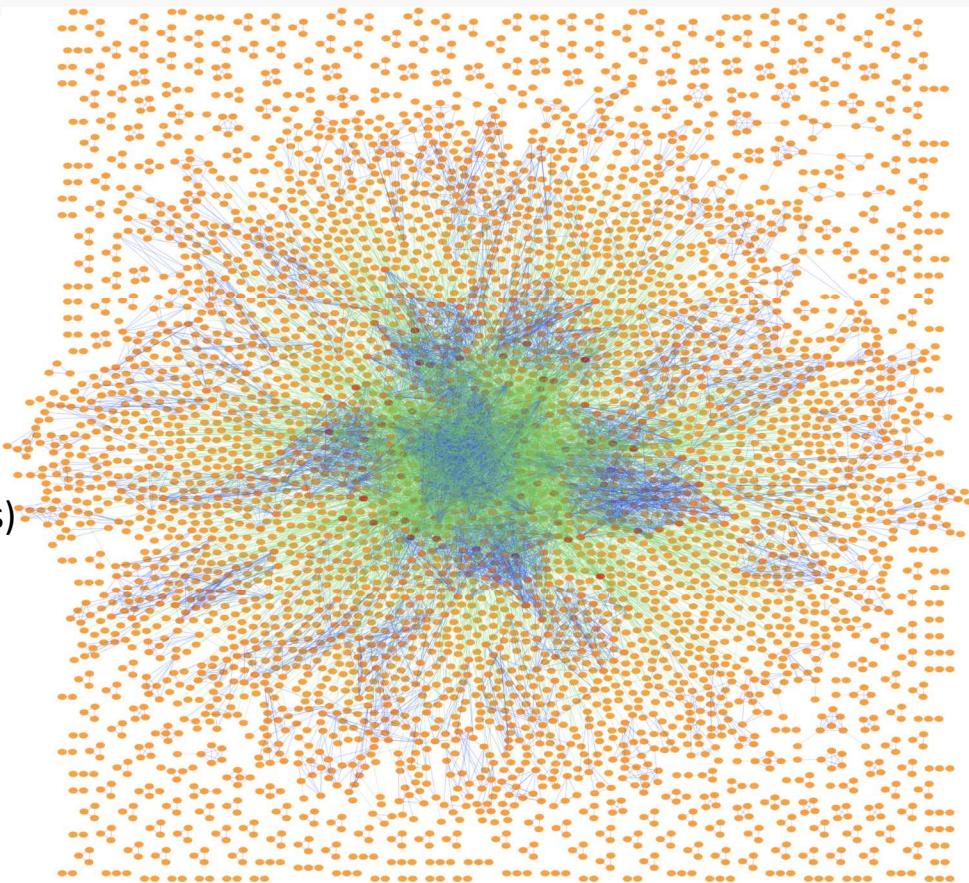
Ali Pinar, C. Seshadhri, and Tamara G. Kolda
Sandia National Labs

U.S. Department of Energy
Office of Advanced Scientific Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Why generate random graphs?

- Enable sharing of surrogate data
 - Computer network traffic
 - Social networks
 - Financial transactions
- Statistical analysis
 - Sample from a specified space
- Testing graph algorithms
 - Scalability
 - Versatility (e.g., vary degree distributions)
 - Characterizing algorithm performance
- Insight into...
 - Generative process
 - Community structure
 - Comparison
 - Evolution
 - Uncertainty



Block Two-Level Erdős-Rényi (BTER) graph;
image courtesy of Nurcan Durak.

Markov Chains: common method to generate random graphs

- For this talk, a Markov chain is a graph whose nodes are realizations of a graph.
- Framework:
 - Find an arbitrary node of an MC
 - Take a loooong random walk
 - You will arrive at a uniform random walk
 - if certain conditions are satisfied.
- Challenges
 - Generating a graph with given properties
 - Rewiring a graph to preserve desired features
 - Patience

Convergence is a problem

Source: <http://metsmerizedonline.com/wp-content/uploads/2013/02/Are-We-There-Yet.jpg>

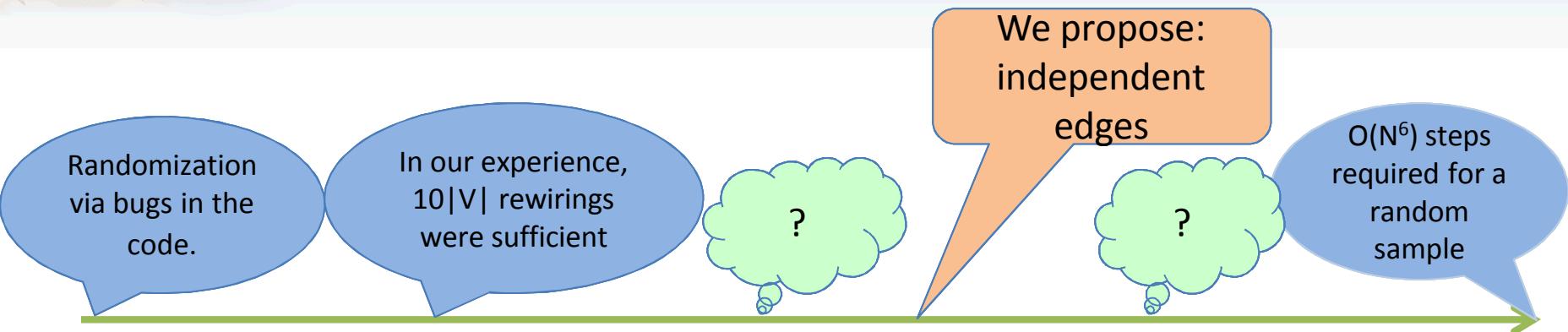
Can we find principled and practical metrics for convergence?

2/15/2012

Pinar - SIAM PP12

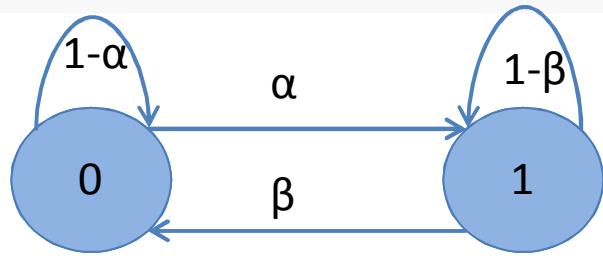
- In theory, we need to prove the stationary distribution of the MC is uniform.
- In practice, bounds for convergence may be impractical or nonexistent.
- Practitioners use unprincipled methods.
 - e.g., 10,000 rewiring operations
- Interpretations of statistical tools may be hard.
 - What does Gelman Rubin test mean from a graphs perspective?

Can we find principled and practical metrics for convergence?



- What is a mathematically sound definition of random enough?
- Goals: practical, sound, and interpretable.
- An imperfect analogy:
 - To solve $Ax=b$, we do not compute $A^{-1}b$, we compute an x , that yields a small residual, $Ax-b$.
 - We have done quite well living with this.

Testing independence of edges



α : probability that the edge will be inserted

β : probability that the edge will be deleted

$$T = \begin{bmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{bmatrix}$$

T : transition matrix of the edge

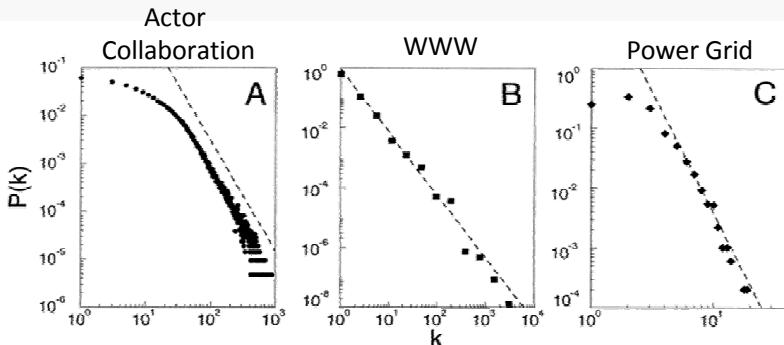
- Assume the addition/deletion of an edge can be approximated as a Markov process.
- The full Markov chain (MC) can be approximated as a collection of smaller Markov chains.
- Convergence of smaller MCs is a necessary condition for convergence of the full MC.

Convergence of smaller Markov chains

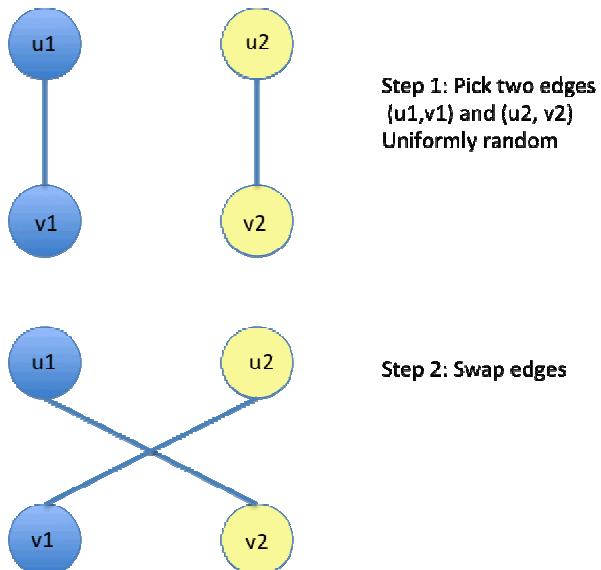
- Eigenvalues of T are 1 and $1 - (\alpha + \beta)$.
 - Eigenvalues form a basis, so initial state v can be written as $v = c_1 e_1 + c_2 e_2$.
 - After N iterations, we have $p = T^N v = c_1 e_1 + c_2 (1 - (\alpha + \beta))^N e_2$
 - The second term decays and p converges to $c_1 e_1$.
 - This vector $c_1 e_1$ indicates the probability the edge is present/absent in a random graph.
 - For tolerance ε , the number of iterations required, N , is

$$N = \ln(1/\varepsilon) / (\alpha + \beta)$$

Preserving the degree distributions

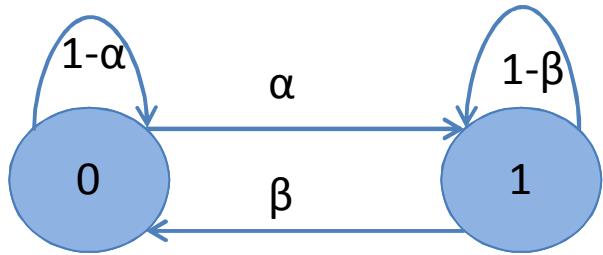


A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. *Science*, 286(5349):509-512, 1999.



- Degree distribution is like a histogram of degrees.
- It is one of the critical features that distinguish real graphs from arbitrary sparse graphs.
- Rewiring scheme has long been used to perturb graphs while preserving the degree distribution.
 - Converges in $O(|E|^6)$ -time.
- Havel and Hakimi described the first algorithm to construct a graph with a given degree distribution.

Transition matrix for preserving degree distribution



α : probability that the edge will be inserted

β : probability that the edge will be deleted

$$N = \ln(1/\varepsilon) / (\alpha + \beta)$$

d_u : degree of vertex u

m : total number of edges

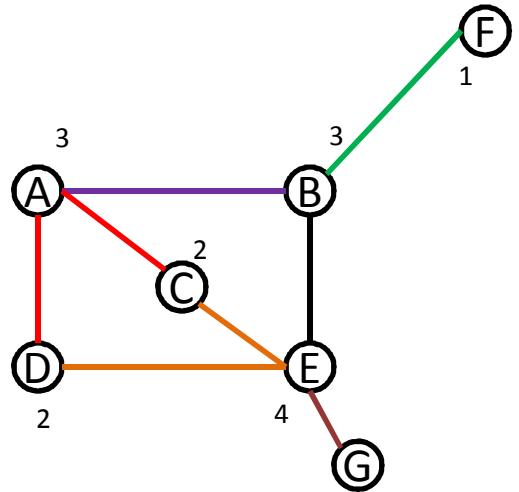
$$\alpha = \frac{d_u d_v}{2m^2} \quad \beta = 1 - \left(1 - \frac{1}{m}\right)^2$$

$$\alpha + \beta \cong \frac{2}{m}$$

To generate a graph with independent edges with a specified degree distribution we need

$$N = \frac{m}{2} \ln \frac{1}{\varepsilon}$$

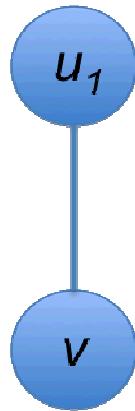
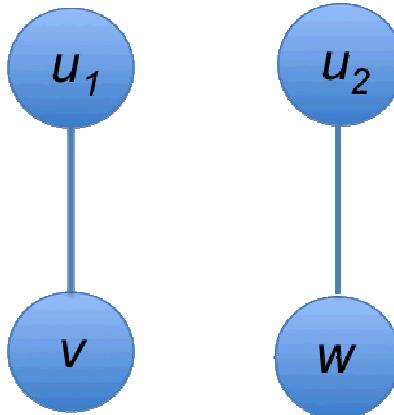
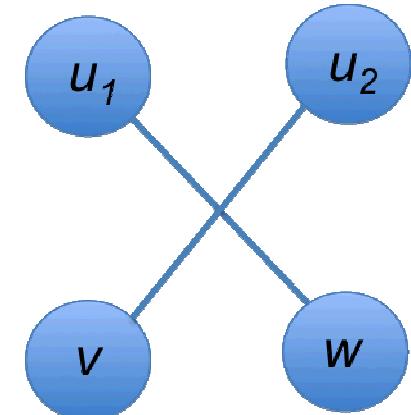
Joint Degree Distribution



Degree	1	2	3	4
1	0	0	1	1
2	0	0	2	2
3	1	2	1	1
4	1	2	1	0

- Joint Degree Distribution (JDD) specifies the number of *edges* between vertices of specified degrees.
- *JDD provides more information about a graph.*
 - *The degree distribution is implicitly defined by JDD.*
- *Work on JDD is more recent and sparse.*

Preserving JDD



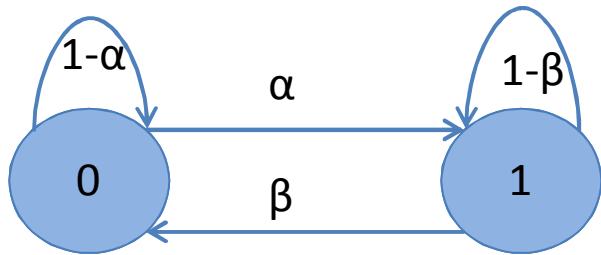
Step 1: Pick an edge (u_1, v) , and pick one of its vertices, e.g., u_1

Step 2: Pick another edge (u, w) , such that $d(u_1) = d(u_2)$ or $d(u_1) = d(w)$

Step 3: Swap edges

- This Markov chain can be used to construct uniformly random instances of a graph with a specified degree distribution.
- No theoretical bounds on convergence.
- A graph with a specified (feasible) joint degree distribution can be constructed in linear time.
- Stanton & P., *ACM J. Experimental Algorithmics*

Transition matrix for preserving degree distribution



α : probability that the edge will be inserted

β : probability that the edge will be deleted

$$N = \ln(1/\varepsilon) / (\alpha + \beta)$$

d_u : degree of vertex u m : # edges

$f(d_u)$: #vertices of degree d_u

$J(d_u, d_v)$: #edges between d_u and d_v

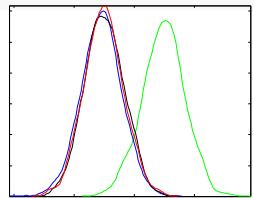
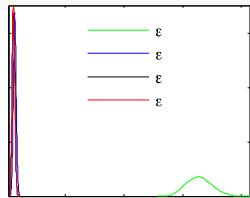
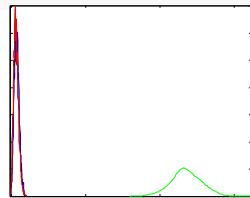
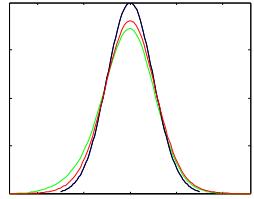
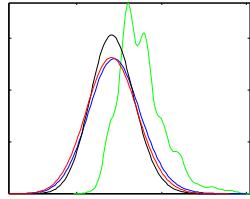
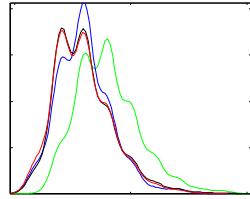
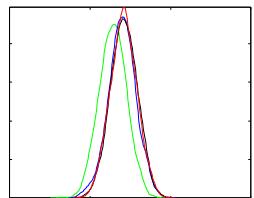
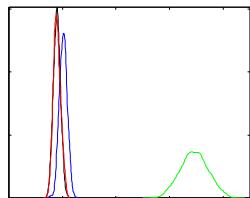
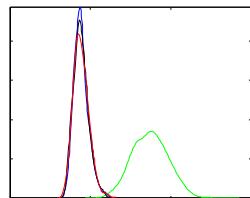
$$\beta = \frac{1}{m} + \frac{f(d_u)-1}{2mf(d_u)} + \frac{f(d_v)-1}{2mf(d_v)}$$

$$\alpha \cong \frac{2J(d_u, d_v)}{mf(d_u)f(d_v)} \quad \alpha + \beta \geq \frac{1}{m}$$

To generate a graph with independent edges with a specified degree distribution we need

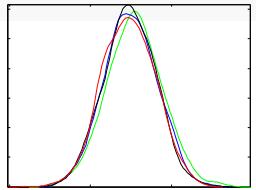
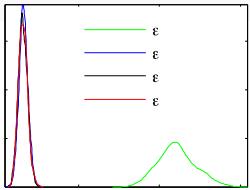
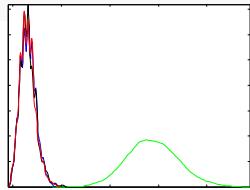
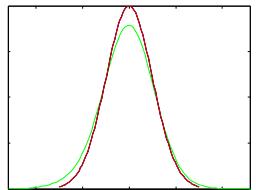
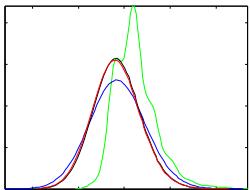
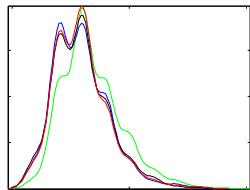
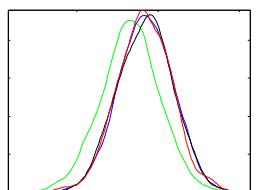
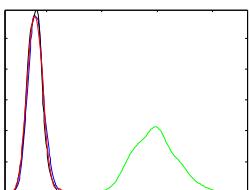
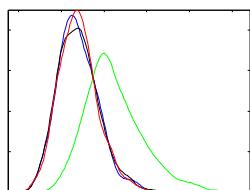
$$N = m \ln \frac{1}{\varepsilon}$$

How much error can we tolerate?



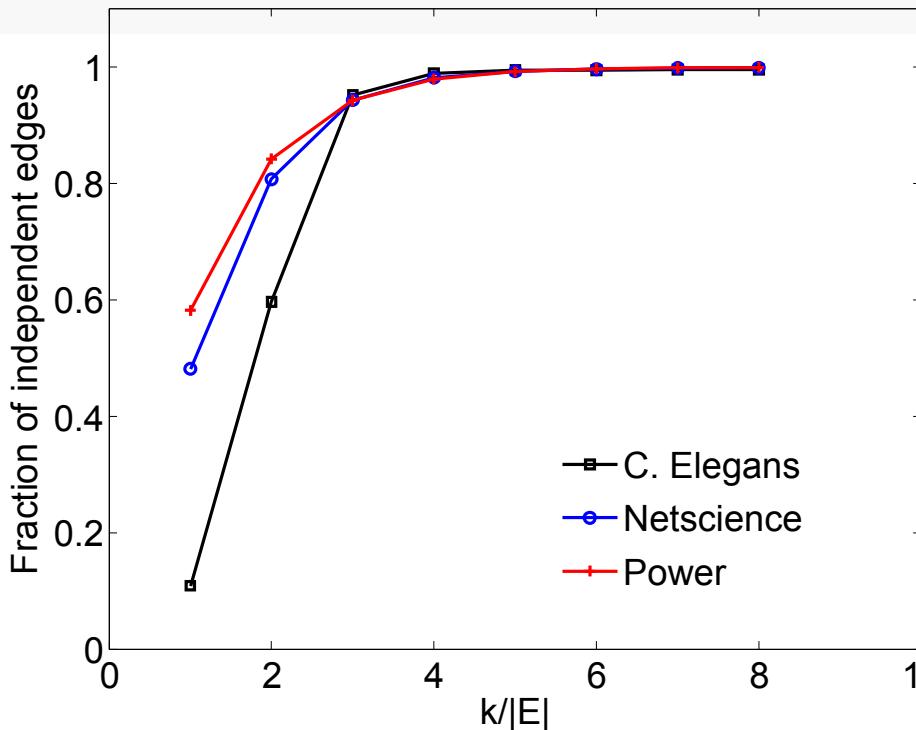
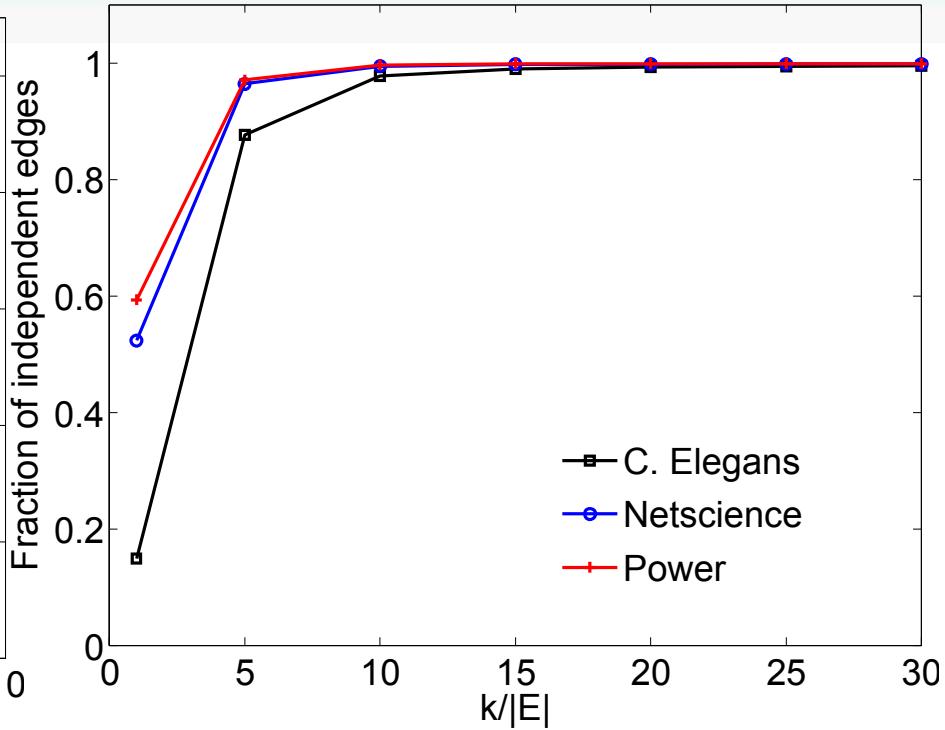
- Preserving degree distribution
- Errors correspond to $0.5, 2.5, 5$, and $7.5|E|$ iterations.

How much error can we tolerate?



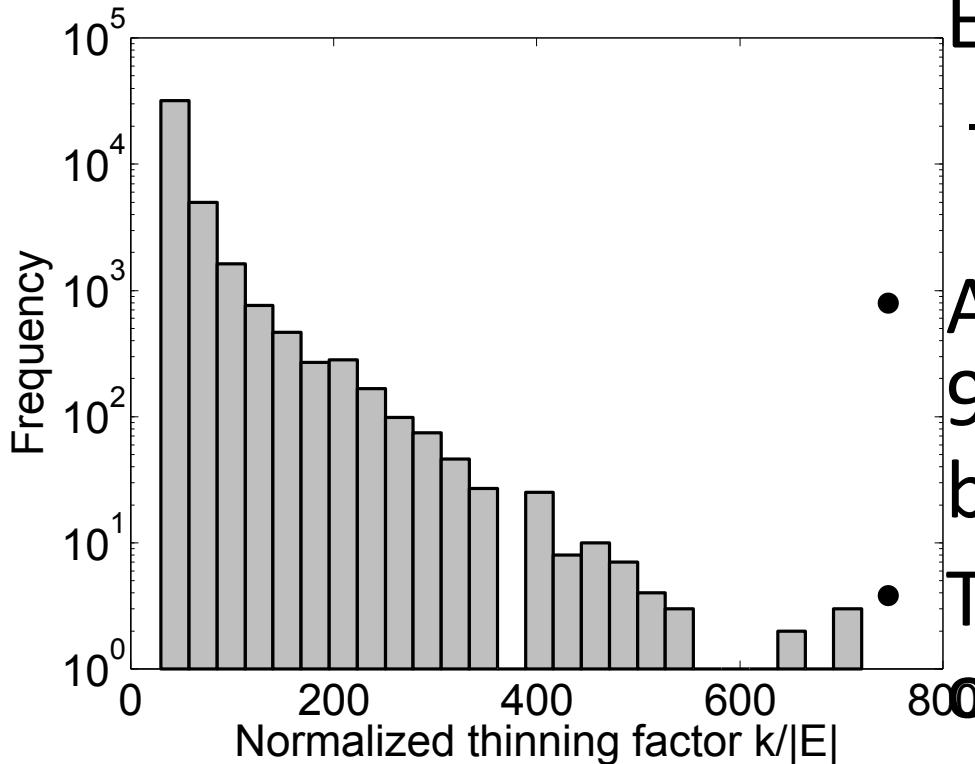
- Preserving JDD
- Errors correspond to 1, 5, 10, and $15|E|$ iterations.

Edges become independent rapidly



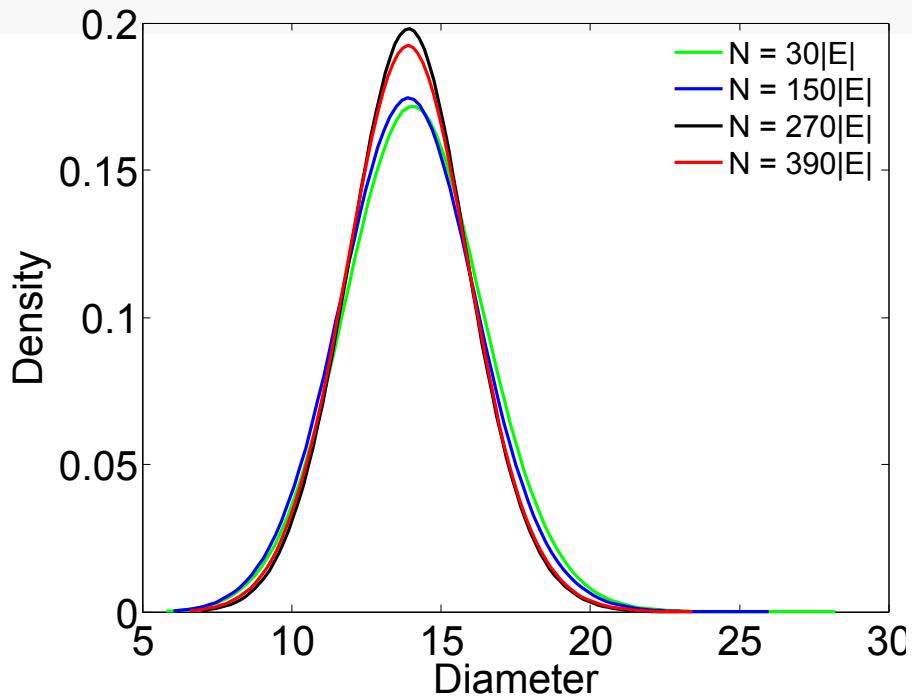
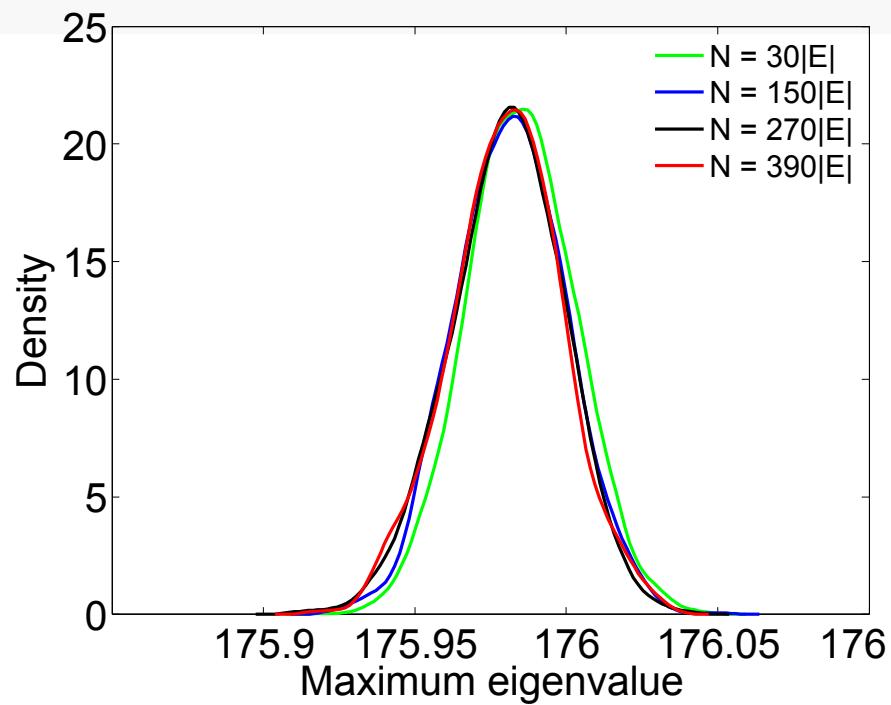
- Many edges become independent quickly.
- Only a few remain after $7.5|E|$ and $15|E|$ iterations for preserving DD and JDD, respectively.

Some edges are tougher than others



- Preserving JDD on Soc-Epinions
 - Edges are sampled down to 10%.
- After $30|E|$ iterations 90% of the edges become independent.
- There are a few outliers.

Diminishing returns



- Preserving JDD on soc-epinions1

Conclusions

- Generating uniformly random instances of a graph with given properties is a fundamental problem in graph analysis.
- Markov chains are commonly used for this purpose, but guaranteeing/testing their convergence is a challenge.
- We proposed to use
 - edge independence as a practical metric for convergence.
 - Smaller Markov chains for presence/absence of edges as a guide.
- We showed how the method applies to DD and JDD preserving MCs.
- Empirical studies on several graphs validated the approach.
- We are not guaranteeing convergence of the chain, but providing a metric that quantifies what is satisfied.
 - Results should be interpreted accordingly.
- The same approach can be used to guarantee independence of a bigger structures.

Relevant Publications

- Generating a random graph
 - J. Ray, A. Pinar, and C. Sehadhri, “Are we there yet? When to stop a Markov chain while generating random graphs,” *PROC. WAW* 12..
 - I. Stanton and A. Pinar, “Constructing and uniform sampling graphs with prescribed joint degree distribution using Markov Chains,” *ACM JEA*.
 - I. Stanton and A. Pinar, “Sampling graphs with prescribed joint degree distribution using Markov Chains,” *ALENEX’11*.