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Why generate random graphs? Why generate random graphs? 
• Enable sharing of surrogate data

– Computer network traffic

– Social networks

– Financial transactions

• Statistical analysis

– Sample from a specified space

• Testing graph algorithms

– Scalability

– Versatility (e.g., vary degree distributions)

– Characterizing algorithm performance

• Insight into…

– Generative process

– Community structure

– Comparison

– Evolution

– Uncertainty

July 13, 2012 Pinar - MMDS12 2

Block Two-Level Erdös-Rényi (BTER) graph; 
image courtesy of Nurcan Durak. 



Markov Chains: common method to Markov Chains: common method to 
generate random graphs  generate random graphs  
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• For this talk, a Markov chain
is a graph whose nodes are
realizations of a graph.

• Framework:
– Find an arbitrary node of an MC
– Take a loooong random walk
– You will arrive at a uniform random walk 

• if certain conditions are satisfied. 

• Challenges
– Generating  a graph with given properties
– Rewiring a graph to preserve desired features
– Patience   



Convergence is a problemConvergence is a problem
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• In theory, we need to prove 
the stationary distribution of 
the MC is uniform. 

• In practice, bounds for 
convergence may be 
impractical or nonexistent. 

• Practitioners use 
unprincipled methods.
– e.g., 10,000 rewiring 

operatiions

• Interpretations of statistical 
tools may be hard.
– What does Gelman Rubin test 

mean from a graphs 

perspective?  

Source: http://metsmerizedonline.com/wp-content/uploads/2013/02/Are-
We-There-Yet.jpg

Can we find principled and 
practical metrics for convergence? 
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Can we find principled and practical Can we find principled and practical 
metrics for convergence? metrics for convergence? 
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• What is a mathematically sound definition of 
random enough?  

• Goals: practical, sound, and interpretable. 
• An imperfect analogy: 

– To solve Ax=b, we do not compute A-1b, we compute 
an x, that yields a small residual, Ax-b.

– We have done quite well living with this.  

) steps O(N6) steps 
required for a 

random 
sample

Randomization 
via bugs in the 

code.

In our experience, 
10|V| rewirings
were sufficient ? ?

We propose: 

edges

We propose: 
independent 

edges



Testing independence of edgesTesting independence of edges
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α
1-α 1-β

β0 1

α: probability that the edge will be inserted

β: probability that the edge will be deleted

T 
1 

 1 













• Assume the addition/deletion of an edge can be approximated 
as a Markov process.  

• The full Markov chain (MC) can be approximated as a collection 
of smaller Markov chains. 

• Convergence of smaller MCs is a necessary condition for 
convergence of the full MC.

T:  transition  matrix of  the edge



Convergence of smaller Markov chainsConvergence of smaller Markov chains
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• Eigenvalues of T are 1 and 1 –(α+β). 
– Eigenvalues form a basis, so  initial state v can be 

written as v=c1e1+c2e2.

– After N iterations, we have

– The second term decays and p converges to c1e1.

– This vector  c1e1 indicates the probability the edge 
is present/absent in a random graph.

– For tolerance ε, the number of iterations required, 
N, is

p T Nv  c1e1  c2(1 (  ))N e2

N  ln(1/) / ( )



Preserving the degree Preserving the degree ddistributionsistributions
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• Degree distribution is like a 
histogram of degrees.

• It is one of the critical 
features that distinguish real 
graphs from arbitrary sparse 
graphs. 

• Rewiring scheme has long 
been used to perturb graphs 
while preserving the degree 
distribution. 
– Converges in O(|E|6)-time. 

• Havel and Hakimi described 
the first algorithm to 
construct a graph with a 
given degree distribution. 

A.-L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5349):509-512, 1999.

Actor 
Collaboration WWW Power Grid



Transition matrix for preserving degree Transition matrix for preserving degree 
distributiondistribution
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α
1-α 1-β

β0 1

α: probability that the edge will be inserted

β: probability that the edge will be deleted  
dudv

2m2

u v

du: degree of vertex u

m: total number of edges

 1 (1
1

m
)2

N  ln(1 /) / ( )   
2

m

To generate a graph with independent edges 
with a specified degree distribution we need   

N 
m

2
ln

1





Joint Degree DistributionJoint Degree Distribution
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• Joint Degree Distribution (JDD) 
specifies the number of edges
between vertices of  specified 
degrees.

• JDD provides more information 
abot a graph. 

– The degree distribution is 
implicitly defined by JDD. 

• Work on JDD is more recent 
and sparse. 

A B
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2

2
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1

G

Degree 1 2 3 4

1 0 0 1 1

2 0 0 2 2

3 1 2 1 1

4 1 2 1 0



Preserving JDDPreserving JDD

• This Markov chain can  be used to construct uniformly random instances of a graph with 
a specified degree distribution. 

• No theoretical bounds on convergence.  
• A graph  with a specified (feasible) joint degree distribution can be constructed in linear 

time. 
• Stanton & P., ACM J. Experimental Algorithmics

11



Transition matrix for preserving degree Transition matrix for preserving degree 
distributiondistribution
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α
1-α 1-β

β0 1

α: probability that the edge will be inserted

β: probability that the edge will be deleted

 
2J(du, dv )

mf (du ) f (dv )

u v

du: degree of vertex u m: # edges

 
1

m


f (du )1

2mf (du )


f (dv )1

2mf (dv )

N  ln(1 /) / ( )

  
1

m

To generate a graph with independent edges 
with a specified degree distribution we need   

N m ln
1



f(du): #vertices of  degree du

J(du,dv): #edges between du and dv



How much error can we tolerate? How much error can we tolerate? 
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• Preserving degree 
distribution

• Errors correspond 
to 0.5, 2.5, 5, and 
7.5|E| iterations. 



How much error can we tolerate? How much error can we tolerate? 
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• Preserving  JDD

• Errors 
correspond to 
1, 5,10, and 
15|E| 
iterations. 



Edges become independent rapidlyEdges become independent rapidly
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• Many edges  become independent quickly.
• Only a few remain after 7.5|E| and 15|E| iterations for 

preserving DD and JDD, respectively. 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k/|E|

F
ra

ct
io

n
o
f

in
d

e
p

e
n

d
e
n

t
e

d
g
e

s

C. Elegans

Netscience

Power

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

k/|E|
F

ra
ct

io
n

o
f

in
d

e
p

e
n

d
e
n

t
e

d
g
e

s

C. Elegans

Netscience

Power



Some edges are tougher than othersSome edges are tougher than others
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• Preserving JDD on Soc-
Epinions
– Edges are sampled 

down to 10%.

• After 30|E| iterations 
90% of the edges 
become independent. 

• There are a few 
outliers.  0 200 400 600 800
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Diminishing returnsDiminishing returns
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• Preserving JDD on soc-epinions1
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ConclusionsConclusions
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• Generating uniformly random instances of a graph with given properties is 
a fundamental problem in graph analysis. 

• Markov chains are commonly used for this purpose, but 
guaranteeing/testing their convergence  is a challenge. 

• We proposed to use

– edge independence as a  practical metric for convergence. 

– Smaller Markov chains for presence/absence of edges as a guide. 

• We showed how the method applies to DD and JDD preserving MCs. 

• Empirical studies on several graphs validated  the approach. 

• We are not guaranteeing convergence of the chain, but providing a metric  
that quantifies what is satisfied. 
– Results should be interpreted accordingly.

• The same approach can be used to guarantee  independence of a bigger 
structures.    



Relevant PublicationsRelevant Publications

• Generating a random graph

– J. Ray, A. Pinar, and C. Sehadhri, Are we there yet? When to stop a Markov chain 
while generating random graphs,” PROC. WAW 12. .

– I. Stanton and A. Pinar, “Constructing and uniform sampling graphs with 
prescribed joint degree distribution using Markov Chains,” ACM JEA.

– I. Stanton and A. Pinar, “Sampling graphs with prescribed joint degree 
distribution using Markov Chains,” ALENEX’11.
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