
Measuring and Tuning Energy Efficiency on
Large Scale High Performance Computing

Platforms
James H. Laros III

Sandia National Laboratories

SAND2012-1271C

Overview

• Motivation – Why?

• Related Research

• Impact at Scale

• Test Platforms

• Measurement and Data Analysis

• Experimental Approach and Results

– Experiments #1, #2 and #3

• Overall Observations

• Acknowledgments

• Questions

Why?

• Power efficiency 1st class
challenge for Exascale

• 2011 – Most efficient = 2026
MFLOPs/Watt

• Based on this, ExaFLOP
requires 494 MW

• Target of 20MW requires 50,000
MFLOPs/Watt efficiency

• ≈25x Increase in efficiency in 9
years

• We have seen ≈6x in the past 4

• Hardware might need help

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

M
F

L
O

P
s
/W

a
tt

YEAR

Required Efficiency

Actual Projected

Related Research

• Most related
– Ge, Feng, Song, Cameron, et al.
– Virginia Tech – PowerPack – DVS scheduling
– Component level = Yes
– Scale = no

• Simulation and model based research
– Microarchitecture level

• Vendors, labs, academia and various collaborations

– Structural Simulation Toolkit (SST) at Sandia for example

• Profile based research
– MPI profiles, log profiles, counters
– Some attempt validation with direct measurement

• Instrumented single node

• Coarse level measurements
– PDU’s
– External Power meters

Impact at Scale

• Unique ability to measure in-situ at large scale

– Allows application analysis at large scale

• Focus on REAL scientific applications

• Focus on LARGE scale

• Impacting next generation platforms

– How they will be built

– How they will be used

Test Platforms

• Sandia National Laboratories

– Red Storm – 1st Cray XT platform

– 3,360 Dual Core AMD 64 bit 2.4 GHz nodes – 4GB Memory

– 6,240 Quad Core AMD 64 bit 2.2 GHz nodes – 8GB Memory

• Oak Ridge National Laboratory

– Jaguar

– 7,832 Quad Core AMD 63 bit 2.2 GHz nodes – 8GB Memory

• All

– Seastar Interconnect

– 2GB/core

– Catamount Light-weight Kernel (LWK) Operating System

– Reliability Availability and Serviceability System (RAS)

In-situ Measurement

#$' () &*"

#$%&"

) + , &") + , &"

) + , &") + , &"

- . / " - . / "

- . / "- . / "

0+ "

' + $. , "

01"

02"
02"

02"
02"

01"
02"

02"
02"

02"

01"
02"

02"
02"

02"

01"

3/ 4 "

• Instrument existing RAS system • Leverage existing H/W sensors

Result: Scalable, in-situ, high-frequency, component level
current and voltage measurement

In-situ Measurement

L0

VRM

NODE NIC

VRM

Data Analysis

• 1 sample per second per
node
– Current and Voltage

• Aligned with application
execution

• Statistical analysis
– Median
– Mean
– Mode
– Coefficient of Variation

• Independent of magnitude

• Per node graphs created
• All done with post

processing code

Node allocation order

Experiments

• Experiment #1

– Proof of concept

– Affecting Power During Idle Cycles

• Experiment #2

– Tuning CPU Power During Application Run-time

• Experiment #3

– Network Bandwidth Tuning During Application
Run-time

Experiment #1:
Affecting Power During Idle Cycles

• Design of Catamount LWK preceded Advanced Power
Management features
– Focus entirely on performance
– Suspected waste of power during idle cycles

• Tight busy idle loop

• Targeted modifications
– Put slave cores in halt when not in use
– Put master core in halt
– C and inline assembly
– Stability sensitive timing considerations
– Research evolved into production

• Questions:
– Can we observe the effect of our changes?
– Can we equal Linux idle characteristics?

Experiment #1: Results

Catamount LWK on QUAD core:
Verification of cores in halt during idle

Experiment #1: Results

Catamount LWK after idle
modifications

Production Compute Node
Linux (CNL)

Experiment #1: Results

• Measurement capability characterized

• Initial operating system modifications successful

– more importantly observed!

• Discovered ability to analyze running applications

• Opened door to further research

Some Accomplishments:

• ≈ 1 million dollars in energy costs since implemented

• DOE/NNSA Environmental Stewardship Award

• DOE/NNSA Defense Programs Award of Excellence

• List Paper?

Experiment #2:
Tuning CPU Power During Application Run-time

• Save energy during application run-time?
• Assumed we would have to dynamically tune frequency
• Targeted modifications

– OS trap to deterministically change P-states
– User space library to request changes
– MPI profile layer to intercept potential wait periods

• While testing modifications discovered static tuning had
significant impact
– More stable
– Easily coordinated

• Experiment #2 based on static tuning
• CPU energy contrasted

– CPU accounts for 44-57% of total node energy
– Single largest single component contributor
– CPU analysis most useful to contrast with other platforms

Why Tune CPU Frequency?

 1050

 1100

 1150

 1200

 1250

 1300

 1350

00:00 10:00 20:00 30:00 40:00 50:00 00:00 10:00 20:00 30:00 40:00

M
ill

i-
V

o
lt
s

(M
V

)

Time (MM:SS since start of sample)

c28-0c2s4n2

P-state CPU FREQ
Red Storm

CPU FREQ
Jaguar

Input Volt.
Red Storm

Input Volt.
Jaguar

0 2.2 GHz 2.1 GHz 1.200 V 1.200 V

1 2.0 GHz 2.1 GHz 1.200 V 1.200 V

2 1.7 GHz 1.7 GHz 1.150 V 1.150 V

3 1.4 GHz 1.4 Ghz 1.075 V 1.075 V

4 1.1 GHz 1.1 GHz 1.050 V 1.050 V

P-states, Frequencies and Voltages
for Test Platforms

Observed Drop in Voltage During
P-state Transitions

• Voltage: quadratically related to Power
P = ACV2f + AVIshortf + Vileak

Experiment #2: Results

Applications:

• 6 Real scientific High Performance Computing
(HPC) applications run at large scale

– AMG2006, LAMMPS, SAGE, CTH, xNOBEL, UMT,
and Charon

– From 1-24K cores

• Two common benchmark applications

– Linpack – compute intensive

– Pallas – communication intensive

Experiment #2: Results

Nodes/Cores P2 Run-time
%Diff

P2 Energy
%Diff

P2 Run-time
%Diff

P3 Energy
%Diff

P4 Run-time
%Diff

P4 Energy
%Diff

HPL 6000/24000  21.1  26.4

Pallas 1024/1024  2.30  43.6

AMG2006 1536/6144  7.47  32.0  18.4  57.1  39.1  78.0

LAMMPS 4096/16384  16.3  22.9  36.0  48.4  69.8  72.2

SAGE 4096/16384  0.402  39.5

SAGE 1024/4096  3.86  38.9  7.72  49.9

CTH 4096/16384  14.4  28.2  29.0  38.9

xNOBEL 1536/6144  6.09  35.5  11.8  50.3

UMT 4096/16384  18.0  26.5

Charon 1024/4096  19.1  27.8

Experiment #2: Additional Analysis

 0

 0.5 1

 1.5 2

P0/1(2.2MHz)

P2(1.7MHz)

P3(1.4MHz)

P4(1.1MHz)

N O R M A L I Z E D R u n t i m e , E n e r g y , E * T , E * T ^ 2 a n d E * T ^ 2

Processor P-state and Frequency (MHz)

AMG (1536 nodes)

Runtime
Energy

Energy * Time
Energy * (Time)^2
Energy * (Time)^3

Analyze Application Signatures Unified Metric:
Energy Delay Product

AMG2006: 6144 cores
Pstates 1-4

Experiment #3:
Network Bandwidth Tuning During Application

Run-time

• Same question: Save energy during application run-
time?

• Same applications

• Static tuning of network bandwidth

– Required configuration and BIOS changes

– Required complete system reboot to alternate settings

• Linear decrease of network energy (assumed)

• Total node energy contrasted

– Network reduction might have affect on CPU energy

• CPU energy measured as part of experiment

Experiment #3: Results

Nodes/Cores ½ BW
Run-time

½ BW
Energy

1/4th BW
Run-time

1/4th BW
Energy

1/8th BW
Run-time

1/8th BW
Energy

SAGE_strong 2048/4096  0.593  15.3  8.90  15.5  20.2  11.4

SAGE_weak 2048/4096  0.609  14.3  8.23  15.8  22.6  9.63

CTH 2048/4096  9.81  7.09  30.2  1.04  40.4 3.50

AMG2006 2048/4096  0.815  15.8  0.116 22.7  0.931  25.9

xNOBEL 1536/3072  0.938  15.4  0.375  22.2  0.375  25.9

UMT 512/1024  0.357  14.7  1.07  21.7  6.32 21.8

Charon 1024/2048  1.55  13.7  2.15  20.8  2.67  24.5

Experiment #3: Additional Analysis

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

V
a
lu

e
s

N
O

R
M

A
L
IZ

E
D

to
b
a
se

N
e
tw

o
rk

B
a
n
d
w

id
th

va
lu

e
s

Network Bandwidth

UMT (512)
Runtime
Energy
Energy * Time
Energy * (Time)2

Energy * (Time)3

0

0.5

1

1.5

2.0

2.5

CTH (2048)

Runtime
Energy
Energy * Time
Energy * (Time)2

Energy * (Time)3

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

SAGE STRONG (2048)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)3

1 1/2 1/4 1/80

0.5

1

1.5

2.0

2.5

Charon (1024)

Runtime
Energy
Energy * Time
Energy * (Time)2

Energy * (Time)3

0

0.5

1

1.5

2.0

2.5

xNOBEL (1536)

Runtime
Energy
Energy * Time
Energy * (Time)2

Energy * (Time)3

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

AMG2006 (2048)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)3

Overall Observations

• Large savings can result from relatively simple
changes
– Halting unused cores during idle

• Increased application energy efficiency can result
from:
– Static CPU frequency tuning at large scale

– Network bandwidth tuning

• Applications exhibit a sweet spot
– Dependent on scale

– Dependent on platform

– Dependent on ????

• Tunable platform components
– Dial in efficiency

Acknowledgments

Committee:
Dr. Wei Shu - Thesis advisor, committee chair and collaborator, University of New
Mexico Electrical and Computer Engineering Department

Dr. Howard Pollard - Committee member, University of New Mexico Electrical and
Computer Engineering Department

James A. Ang - Committee member and Manager of the Scalable Computer
Architectures Department at Sandia National Laboratories

Collaborators:
Kevin Pedretti, Sue Kelly, John Vandyke, Kurt Ferreira and Courtenay Vaughan –
Technical Staff Sandia National Laboratories, and Mark Swan - Cray Inc.

Funding:
National Nuclear Security Agency (NNSA) Advanced Simulation and Com- puting
(ASC) program and the Department of Energy’s (DOE) Innovative and Novel
Computational Impact on Theory and Experiment (INSITE) program. Sandia
National Laboratories Center 1420 Sudip Dosanjh Senior Manager, Department
1422, James Ang manager and Department 1423 Ronald Brightwell manager.

Questions?

.. not everything that can be counted counts,
and not everything that counts can be counted.
- William Bruce Cameron

