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Why?

Power efficiency 15t class
challenge for Exascale

2011 — Most efficient = 2026
MFLOPs/Watt

Based on this, ExaFLOP
requires 494 MW

Target of 20MW requires 50,000
MFLOPs/Watt efficiency

=25x Increase in efficiency in 9
years

We have seen =6x in the past 4
Hardware might need help

MFLOPs/Watt
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& Related Research

* Most related
— Ge, Feng, Song, Cameron, et al.
— Virginia Tech — PowerPack — DVS scheduling
— Component level = Yes
— Scale = no
« Simulation and model based research
— Microarchitecture level
* Vendors, labs, academia and various collaborations
— Structural Simulation Toolkit (SST) at Sandia for example
* Profile based research
— MPI profiles, log profiles, counters
— Some attempt validation with direct measurement
* Instrumented single node
» Coarse level measurements
— PDU’s
— External Power meters
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* Unique ability to measure in-situ at large scale
— Allows application analysis at large scale

* Focus on REAL scientific applications

* Focus on LARGE scale

* Impacting next generation platforms

— How they will be built
— How they will be used

Impact at Scale
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- Sandia National Laboratories

— Red Storm — 15t Cray XT platform

— 3,360 Dual Core AMD 64 bit 2.4 GHz nodes — 4GB Memory

— 6,240 Quad Core AMD 64 bit 2.2 GHz nodes — 8GB Memory
- Oak Ridge National Laboratory

— Jaguar

— 7,832 Quad Core AMD 63 bit 2.2 GHz nodes — 8GB Memory
 All

— Seastar Interconnect

— 2GB/core

— Catamount Light-weight Kernel (LWK) Operating System

— Reliability Availability and Serviceability System (RAS)

Test Platforms
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 Instrument existing RAS system ¢ Leverage existing H/'W sensors

In-situ Measurement
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Result: Scalable, in-situ, high-frequency, component level

current and voltage measurement @ e
Laboratories



} In-situ Measurement
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} Data Analysis

Node allocation order

* 1 sample per second per
node

— Current and Voltage
» Aligned with application
execution
- Statistical analysis
— Median
— Mean
— Mode

— Coefficient of Variation
* Independent of magnitude

* Per node graphs created

» All done with post
processing code
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« Experiment #1

— Proof of concept

— Affecting Power During Idle Cycles
« Experiment #2

— Tuning CPU Power During Application Run-time
« Experiment #3

— Network Bandwidth Tuning During Application
Run-time

Experiments
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& Experiment #1:

Affecting Power During Idle Cycles

* Design of Catamount LWK preceded Advanced Power
Management features

— Focus entirely on performance

— Suspected waste of power during idle cycles
» Tight busy idle loop

» Targeted modifications
— Put slave cores in halt when not in use
— Put master core in halt
— C and inline assembly
— Stability sensitive timing considerations
— Research evolved into production
* Questions:
— Can we observe the effect of our changes?
— Can we equal Linux idle characteristics?
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Experiment #1: Results
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Experiment #1: Results
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 Measurement capability characterized

* Initial operating system modifications successful
— more importantly observed!

* Discovered ability to analyze running applications
* Opened door to further research

Some Accomplishments:
* = 1 million dollars in energy costs since implemented
« DOE/NNSA Environmental Stewardship Award
 DOE/NNSA Defense Programs Award of Excellence
 List Paper?

Experiment #1: Results
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& Experiment #2:

Tuning CPU Power During Application Run-time

« Save energy during application run-time?
« Assumed we would have to dynamically tune frequency
» Targeted modifications
— OS trap to deterministically change P-states
— User space library to request changes
— MPI profile layer to intercept potential wait periods
* While testing modifications discovered static tuning had
significant impact
— More stable
— Easily coordinated
« Experiment #2 based on static tuning
« CPU energy contrasted
— CPU accounts for 44-57% of total node energy
— Single largest single component contributor
— CPU analysis most useful to contrast with other platforms
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Why Tune CPU Frequency?

Voltage: quadratically related to Power
P=ACVf+AVI, [+

2.2GHz
1 2.0GHz
2 1.7 GHz
3 1.4 GHz
4 1.1 GHz

P-states, Frequencies and Voltages
for Test Platforms
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Applications:
* 6 Real scientific High Performance Computing
(HPC) applications run at large scale

— AMG2006, LAMMPS, SAGE, CTH, xNOBEL, UMT,
and Charon

— From 1-24K cores

« Two common benchmark applications
— Linpack — compute intensive
— Pallas — communication intensive

Experiment #2: Results
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Experiment #2: Results

Nodes/Cores | P2 Run-time | P2 Energy P2 Run-time | P3 Energy P4 Run-time | P4 Energy
%Diff %Diff %Diff %Diff %Diff %Diff

LAMMPS 4096/16384 N 16.3 V229 A 36.0 WV 48.4 A 69.8 V722

4096/16384 A 14.4 ¥ 28.2 A 29.0 ¥ 38.9 --
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Experiment #2: Additional Analysis

AMG2006: 6144 cores
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# Experiment #3:

Network Bandwidth Tuning During Application
Run-time

« Same question: Save energy during application run-
time?
« Same applications
« Static tuning of network bandwidth
— Required configuration and BIOS changes
— Required complete system reboot to alternate settings
 Linear decrease of network energy (assumed)
* Total node energy contrasted

— Network reduction might have affect on CPU energy
 CPU energy measured as part of experiment
ational
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Experiment #3: Results

Nodes/Cores | %z BW %, BW 1/4th BW 1/4th BW 1/8th BW 1/8th BW
Run-time Energy Run-time Energy Run-time Energy
SAGE_strong  2048/4096 -- A 8.90 ¥ 15.5 A 20.2 V114
SAGE weak  2048/4096 -- 4 8.23 ¥ 15.8 A 22.6 ¥ 0.63

CTH 2048/4096 A 9.81 ¥ 7.09 A 30.2 A 1.04 A 40.4 A3.50

UMT 512/1024 ---- A 6.32 ¥21.8
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& Overall Observations

« Large savings can result from relatively simple
changes

— Halting unused cores during idle

 Increased application energy efficiency can result
from:

— Static CPU frequency tuning at large scale
— Network bandwidth tuning
» Applications exhibit a sweet spot
— Dependent on scale
— Dependent on platform
— Dependent on ??7??
* Tunable platform components
— Dial in efficiency
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Questions?

.. not everything that can be counted counts,
and not everything that counts can be counted.
- William Bruce Cameron
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