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Why?

• Power efficiency 1st class 
challenge for Exascale

• 2011 – Most efficient = 2026 
MFLOPs/Watt

• Based on this, ExaFLOP
requires 494 MW

• Target of 20MW requires 50,000 
MFLOPs/Watt efficiency

• ≈25x Increase in efficiency in 9 
years

• We have seen ≈6x in the past 4

• Hardware might need help
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Related Research

• Most related
– Ge, Feng, Song, Cameron, et al.
– Virginia Tech – PowerPack – DVS scheduling
– Component level = Yes
– Scale = no

• Simulation and model based research
– Microarchitecture level

• Vendors, labs, academia and various collaborations

– Structural Simulation Toolkit (SST) at Sandia for example

• Profile based research
– MPI profiles, log profiles, counters
– Some attempt validation with direct measurement

• Instrumented single node

• Coarse level measurements
– PDU’s
– External Power meters



Impact at Scale

• Unique ability to measure in-situ at large scale

– Allows application analysis at large scale

• Focus on REAL scientific applications

• Focus on LARGE scale

• Impacting next generation platforms

– How they will be built

– How they will be used



Test Platforms

• Sandia National Laboratories 

– Red Storm – 1st Cray XT platform

– 3,360 Dual Core AMD 64 bit 2.4 GHz nodes – 4GB Memory

– 6,240 Quad Core AMD 64 bit 2.2 GHz nodes – 8GB Memory

• Oak Ridge National Laboratory

– Jaguar

– 7,832 Quad Core AMD 63 bit 2.2 GHz nodes – 8GB Memory

• All

– Seastar Interconnect

– 2GB/core

– Catamount Light-weight Kernel (LWK) Operating System

– Reliability Availability and Serviceability System (RAS)



In-situ Measurement
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• Instrument existing RAS system • Leverage existing H/W sensors

Result: Scalable, in-situ, high-frequency, component level
current and voltage measurement



In-situ Measurement
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Data Analysis

• 1 sample per second per 
node
– Current and Voltage

• Aligned with application 
execution

• Statistical analysis
– Median
– Mean
– Mode
– Coefficient of Variation

• Independent of magnitude

• Per node graphs created
• All done with post 

processing code

Node allocation order



Experiments

• Experiment #1

– Proof of concept

– Affecting Power During Idle Cycles

• Experiment #2

– Tuning CPU Power During Application Run-time

• Experiment #3

– Network Bandwidth Tuning During Application 
Run-time



Experiment #1: 
Affecting Power During Idle Cycles

• Design of Catamount LWK preceded Advanced Power 
Management features
– Focus entirely on performance
– Suspected waste of power during idle cycles

• Tight busy idle loop 

• Targeted modifications
– Put slave cores in halt when not in use
– Put master core in halt
– C and inline assembly
– Stability sensitive timing considerations
– Research evolved into production

• Questions:
– Can we observe the effect of our changes?
– Can we equal Linux idle characteristics?



Experiment #1: Results

Catamount LWK on QUAD core: 
Verification of cores in halt during idle



Experiment #1: Results

Catamount LWK after idle 
modifications

Production Compute Node 
Linux (CNL)



Experiment #1: Results

• Measurement capability characterized

• Initial operating system modifications successful

– more importantly observed!

• Discovered ability to analyze running applications

• Opened door to further research

Some Accomplishments:

• ≈ 1 million dollars in energy costs since implemented

• DOE/NNSA Environmental Stewardship Award

• DOE/NNSA Defense Programs Award of Excellence

• List Paper?



Experiment #2:
Tuning CPU Power During Application Run-time

• Save energy during application run-time?
• Assumed we would have to dynamically tune frequency
• Targeted modifications

– OS trap to deterministically change P-states
– User space library to request changes
– MPI profile layer to intercept potential wait periods

• While testing modifications discovered static tuning had 
significant impact
– More stable
– Easily coordinated

• Experiment #2 based on static tuning 
• CPU energy contrasted

– CPU accounts for 44-57% of total node energy
– Single largest single component contributor
– CPU analysis most useful to contrast with other platforms



Why Tune CPU Frequency?
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P-state CPU FREQ
Red Storm

CPU FREQ
Jaguar

Input Volt.
Red Storm

Input Volt.
Jaguar

0 2.2 GHz 2.1 GHz 1.200 V 1.200 V

1 2.0 GHz 2.1 GHz 1.200 V 1.200 V

2 1.7 GHz 1.7 GHz 1.150 V 1.150 V

3 1.4 GHz 1.4 Ghz 1.075 V 1.075 V

4 1.1 GHz 1.1 GHz 1.050 V 1.050 V

P-states, Frequencies and Voltages
for Test Platforms

Observed Drop in Voltage During
P-state Transitions

• Voltage: quadratically related to Power
P = ACV2f + AVIshortf + Vileak



Experiment #2: Results

Applications:

• 6 Real scientific High Performance Computing 
(HPC) applications run at large scale

– AMG2006, LAMMPS, SAGE, CTH, xNOBEL, UMT, 
and Charon

– From 1-24K cores

• Two common benchmark applications

– Linpack – compute intensive

– Pallas – communication intensive



Experiment #2: Results

Nodes/Cores P2 Run-time
%Diff

P2 Energy
%Diff

P2 Run-time
%Diff

P3 Energy
%Diff

P4 Run-time
%Diff

P4 Energy
%Diff

HPL 6000/24000  21.1  26.4

Pallas 1024/1024  2.30  43.6

AMG2006 1536/6144  7.47  32.0  18.4  57.1  39.1  78.0

LAMMPS 4096/16384  16.3  22.9  36.0  48.4  69.8  72.2

SAGE 4096/16384  0.402  39.5

SAGE 1024/4096  3.86  38.9  7.72  49.9

CTH 4096/16384  14.4  28.2  29.0  38.9

xNOBEL 1536/6144  6.09  35.5  11.8  50.3

UMT 4096/16384  18.0  26.5

Charon 1024/4096  19.1  27.8



Experiment #2: Additional Analysis
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Experiment #3:
Network Bandwidth Tuning During Application 

Run-time

• Same question: Save energy during application run-
time?

• Same applications

• Static tuning of network bandwidth

– Required configuration and BIOS changes

– Required complete system reboot to alternate settings

• Linear decrease of network energy (assumed)

• Total node energy contrasted

– Network reduction might have affect on CPU energy

• CPU energy measured as part of experiment



Experiment #3: Results

Nodes/Cores ½ BW 
Run-time

½ BW 
Energy

1/4th BW
Run-time

1/4th BW
Energy

1/8th BW
Run-time

1/8th BW
Energy

SAGE_strong 2048/4096  0.593  15.3  8.90  15.5  20.2  11.4

SAGE_weak 2048/4096  0.609  14.3  8.23  15.8  22.6  9.63

CTH 2048/4096  9.81  7.09  30.2  1.04  40.4 3.50

AMG2006 2048/4096  0.815  15.8  0.116 22.7  0.931  25.9

xNOBEL 1536/3072  0.938  15.4  0.375  22.2  0.375  25.9

UMT 512/1024  0.357  14.7  1.07  21.7  6.32 21.8

Charon 1024/2048  1.55  13.7  2.15  20.8  2.67  24.5



Experiment #3: Additional Analysis
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Overall Observations

• Large savings can result from relatively simple 
changes
– Halting unused cores during idle

• Increased application energy efficiency can result 
from:
– Static CPU frequency tuning at large scale

– Network bandwidth tuning

• Applications exhibit a sweet spot
– Dependent on scale

– Dependent on platform

– Dependent on ????

• Tunable platform components 
– Dial in efficiency
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Questions?

.. not everything that can be counted counts, 
and not everything that counts can be counted.
- William Bruce Cameron


